Infrared microspectroscopy combined with conventional atomic force microscopy

被引:9
|
作者
Kwon, B. [1 ,5 ]
Schulmerich, M. V. [2 ,3 ,5 ]
Elgass, L. J. [2 ]
Kong, R. [2 ,5 ]
Holton, S. E. [2 ,5 ]
Bhargava, R. [1 ,2 ,3 ,4 ,5 ]
King, W. P. [1 ,3 ,5 ,6 ]
机构
[1] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Bioengn, Urbana, IL 61801 USA
[3] Univ Illinois, Micro & Nanotechnol Lab, Urbana, IL 61801 USA
[4] Univ Illinois, Univ Illinois, Ctr Canc, Urbana, IL 61801 USA
[5] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[6] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Bimaterial; Microcantilever; Infrared; Thermomechanical; Photothermal; FT-IR spectroscopy; Monochromator; Spectral resolution; Spatial resolution; SPATIAL-RESOLUTION; PERFORMANCE; ABSORPTION; SPECTROMICROSCOPY; AFM;
D O I
10.1016/j.ultramic.2012.03.007
中图分类号
TH742 [显微镜];
学科分类号
摘要
This paper reports nanotopography and mid infrared (IR) microspectroscopic imaging coupled within the same atomic force microscope (AFM). The reported advances are enabled by using a bimaterial microcantilever, conventionally used for standard AFM imaging, as a detector of monochromatic IR light. IR light intensity is recorded as thermomechanical bending of the cantilever measured upon illumination with intensity-modulated, narrowband radiation. The cantilever bending is then correlated with the sample's IR absorption. Spatial resolution was characterized by imaging a USAF 1951 optical resolution target made of SU-8 photoresist. The spatial resolution of the AFM topography measurement was a few nanometers as expected, while the spatial resolution of the IR measurement was 24.4 mu m using relatively coarse spectral resolution (25-125 cm(-1)). In addition to well-controlled samples demonstrating the spatial and spectral properties of the setup, we used the method to map engineered skin and three-dimensional cell culture samples. This research combines modest IR imaging capabilities with the exceptional topographical imaging of conventional AFM to provide advantages of both in a facile manner. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:56 / 61
页数:6
相关论文
共 50 条
  • [21] Microspectroscopy - Imaging molecular chemistry with infrared microscopy
    Wetzel, DL
    LeVine, SM
    SCIENCE, 1999, 285 (5431) : 1224 - 1225
  • [22] CAN ATOMIC FORCE MICROSCOPY TIPS BE INSPECTED BY ATOMIC FORCE MICROSCOPY
    HELLEMANS, L
    WAEYAERT, K
    HENNAU, F
    STOCKMAN, L
    HEYVAERT, I
    VANHAESENDONCK, C
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1991, 9 (02): : 1309 - 1312
  • [23] Multimodal atomic force microscopy: Biological imaging using atomic force microscopy combined with light fluorescence and confocal microscopies and electrophysiologic recording
    Lal, R
    Proksch, R
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 1997, 8 (03) : 293 - 300
  • [24] Mid-infrared spectroscopy and microscopy of subcellular structures in eukaryotic cells with atomic force microscopy - infrared spectroscopy
    Quaroni, Luca
    Pogoda, Katarzyna
    Wiltowska-Zuber, Joanna
    Kwiatek, Wojciech M.
    RSC ADVANCES, 2018, 8 (05): : 2786 - 2794
  • [25] Atomic force Microscopy
    Perkel, JM
    SCIENTIST, 2006, 20 (07): : 68 - 68
  • [26] Development of atomic force microscopy combined with scanning electron microscopy for investigating electronic devices
    Uruma, Takeshi
    Tsunemitsu, Chiaki
    Terao, Katsuki
    Nakazawa, Kenta
    Satoh, Nobuo
    Yamamoto, Hidekazu
    Iwata, Futoshi
    AIP ADVANCES, 2019, 9 (11)
  • [27] Atomic force microscopy
    West, P
    Starostina, N
    ADVANCED MATERIALS & PROCESSES, 2004, 162 (02): : 35 - 37
  • [28] Atomic force microscopy
    Wright-Smith, C
    Smith, CM
    SCIENTIST, 2001, 15 (02): : 23 - 24
  • [29] Atomic Force Microscopy
    Bellon, Ludovic
    PHYSICS TODAY, 2020, 73 (05) : 57 - 58
  • [30] Atomic force microscopy
    Diaspro, A
    Rolandi, R
    IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 1997, 16 (02): : 26 - 27