Lattice paths and generalized cluster complexes

被引:6
|
作者
Eu, Sen-Peng [1 ]
Fu, Tung-Shan [2 ]
机构
[1] Natl Univ Kaohsiung, Dept Appl Math, Kaohsiung 811, Taiwan
[2] Natl Pingtung Inst Commerce, Fac Math, Pingtung 900, Taiwan
关键词
lattice paths; generalized cluster complex; Schroder paths; Delannoy paths;
D O I
10.1016/j.jcta.2007.12.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we propose a variant of the generalized Schroder paths and generalized Delannoy paths by giving a restriction on the positions of certain steps. This generalization turns out to be reasonable, as attested by the connection with the faces of generalized cluster complexes of types A and B. As a result, we derive Krattenthaler's F-triangles for these two types by a combinatorial approach in terms of lattice paths. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1183 / 1210
页数:28
相关论文
共 50 条
  • [31] On the enumeration of positive cells in generalized cluster complexes and Catalan hyperplane arrangements
    Athanasiadis, Christos A.
    Tzanaki, Eleni
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2006, 23 (04) : 355 - 375
  • [32] On the enumeration of positive cells in generalized cluster complexes and Catalan hyperplane arrangements
    Athanasiadis, Christos A.
    Tzanaki, Eleni
    Journal of Algebraic Combinatorics, 2006, 23 (04): : 355 - 375
  • [33] Shellability and higher Cohen-Macaulay connectivity of generalized cluster complexes
    Christos A. Athanasiadis
    Eleni Tzanaki
    Israel Journal of Mathematics, 2008, 167
  • [34] Shellability and higher Cohen-Macaulay connectivity of generalized cluster complexes
    Athanasiadis, Christos A.
    Tzanaki, Eleni
    ISRAEL JOURNAL OF MATHEMATICS, 2008, 167 (01) : 177 - 191
  • [35] Trajectories of directed lattice paths
    van Rensburg, E. J. Janse
    PHYSICA SCRIPTA, 2023, 98 (03)
  • [36] HOOK DIFFERENCES AND LATTICE PATHS
    AGARWAL, AK
    ANDREWS, GE
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1986, 14 (01) : 5 - 14
  • [37] The Degree of Symmetry of Lattice Paths
    Sergi Elizalde
    Annals of Combinatorics, 2021, 25 : 877 - 911
  • [38] Lattice paths inside a table
    Yaqubi, Daniel
    Ghouchan, Mohammad Farrokhi Derakhshandeh
    Zoeram, Hamed Ghasemian
    MATHEMATICAL COMMUNICATIONS, 2023, 28 (02) : 181 - 201
  • [39] Jagged Partitions and Lattice Paths
    P. Jacob
    P. Mathieu
    Annals of Combinatorics, 2009, 13 : 87 - 102
  • [40] COUNTING PATHS IN YOUNG LATTICE
    GESSEL, IM
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1993, 34 (01) : 125 - 134