MULTI-BUMP SOLUTIONS FOR FRACTIONAL SCHRODINGER EQUATION WITH ELECTROMAGNETIC FIELDS AND CRITICAL NONLINEARITY

被引:0
|
作者
Liang, Sihua [1 ]
Nguyen Thanh Chung [2 ]
Zhang, Binlin [3 ]
机构
[1] Changchun Normal Univ, Coll Math, Changchun 130032, Peoples R China
[2] Quang Binh Univ, Dept Math, 312 Ly Thuong Kiet, Dong Hoi, Quang Binh, Vietnam
[3] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
KIRCHHOFF TYPE PROBLEMS; SEMICLASSICAL LIMIT; POSITIVE SOLUTIONS; EXISTENCE; MULTIPLICITY; STATES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider the existence of multi-bump solutions for a class of the fractional Schrodinger equation with external magnetic field and critical nonlinearity in R-N: (-Delta)(A)(s)u + (lambda V(x) + Z(x))u = beta f(vertical bar u vertical bar(2))u + vertical bar u vertical bar(2s)*(-2) u, where f is a continuous function satisfying Ambrosetti-Rabinowitz con- dition, and V : R-N -> R has a potential well Omega := intV(-1) (0) which possesses k disjoint bounded components Omega := boolean OR(k)(j=1)Omega(j). By using variational methods, we prove that if the parameter lambda > 0 is large enough, then the equation has at least 2(k) - 1 multi-bump solutions.
引用
收藏
页码:423 / 456
页数:34
相关论文
共 50 条
  • [31] On the fractional Schrodinger-Kirchhoff equations with electromagnetic fields and critical nonlinearity
    Liang, Sihua
    Repovs, Dusan
    Zhang, Binlin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (05) : 1778 - 1794
  • [32] Multi-bump solutions for the nonlinear Schrodinger-Poisson system
    Li, Gongbao
    Peng, Shuangjie
    Wang, Chunhua
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (05)
  • [33] Multi-bump bound states of Schrodinger equations with a critical frequency
    Cao, Daomin
    Peng, Shuangjie
    MATHEMATISCHE ANNALEN, 2006, 336 (04) : 925 - 948
  • [34] Existence of multi-bump solutions for the Schrodinger-Poisson system
    Ding, Hui-Sheng
    Li, Benniao
    Ye, Jianghua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 503 (02)
  • [35] Existence and symmetry of multi-bump solutions for nonlinear Schrodinger equations
    Wang, ZQ
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 159 (01) : 102 - 137
  • [36] Multi-bump solutions for a strongly indefinite semilinear Schrodinger equation without symmetry or convexity assumptions
    Chen, Shaowei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (10) : 3067 - 3102
  • [37] Multi-bump Solutions for the Quasilinear Choquard Equation in RN
    Shi, Zhiheng
    Huo, Yuanyuan
    Liang, Sihua
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2023, 29 (04) : 1357 - 1383
  • [38] EXISTENCE OF MULTI-BUMP SOLUTIONS FOR A NONLINEAR KIRCHHOFF EQUATION
    Chen, Yongpeng
    Yang, Zhipeng
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2024, 8 (02): : 233 - 248
  • [39] Multi-bump Solutions for a Choquard Equation with Nonsymmetric Potential
    Gao, Fashun
    Yang, Minbo
    Zheng, Yu
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (06)
  • [40] Multi-bump standing waves with critical frequency for nonlinear Schrodinger equations
    Byeon, Jaeyoung
    Oshita, Yoshihito
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (04): : 1121 - 1152