MULTI-BUMP SOLUTIONS FOR FRACTIONAL SCHRODINGER EQUATION WITH ELECTROMAGNETIC FIELDS AND CRITICAL NONLINEARITY

被引:0
|
作者
Liang, Sihua [1 ]
Nguyen Thanh Chung [2 ]
Zhang, Binlin [3 ]
机构
[1] Changchun Normal Univ, Coll Math, Changchun 130032, Peoples R China
[2] Quang Binh Univ, Dept Math, 312 Ly Thuong Kiet, Dong Hoi, Quang Binh, Vietnam
[3] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
KIRCHHOFF TYPE PROBLEMS; SEMICLASSICAL LIMIT; POSITIVE SOLUTIONS; EXISTENCE; MULTIPLICITY; STATES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider the existence of multi-bump solutions for a class of the fractional Schrodinger equation with external magnetic field and critical nonlinearity in R-N: (-Delta)(A)(s)u + (lambda V(x) + Z(x))u = beta f(vertical bar u vertical bar(2))u + vertical bar u vertical bar(2s)*(-2) u, where f is a continuous function satisfying Ambrosetti-Rabinowitz con- dition, and V : R-N -> R has a potential well Omega := intV(-1) (0) which possesses k disjoint bounded components Omega := boolean OR(k)(j=1)Omega(j). By using variational methods, we prove that if the parameter lambda > 0 is large enough, then the equation has at least 2(k) - 1 multi-bump solutions.
引用
收藏
页码:423 / 456
页数:34
相关论文
共 50 条