共 50 条
MULTI-BUMP SOLUTIONS FOR FRACTIONAL SCHRODINGER EQUATION WITH ELECTROMAGNETIC FIELDS AND CRITICAL NONLINEARITY
被引:0
|作者:
Liang, Sihua
[1
]
Nguyen Thanh Chung
[2
]
Zhang, Binlin
[3
]
机构:
[1] Changchun Normal Univ, Coll Math, Changchun 130032, Peoples R China
[2] Quang Binh Univ, Dept Math, 312 Ly Thuong Kiet, Dong Hoi, Quang Binh, Vietnam
[3] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
基金:
中国国家自然科学基金;
中国博士后科学基金;
关键词:
KIRCHHOFF TYPE PROBLEMS;
SEMICLASSICAL LIMIT;
POSITIVE SOLUTIONS;
EXISTENCE;
MULTIPLICITY;
STATES;
D O I:
暂无
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this article, we consider the existence of multi-bump solutions for a class of the fractional Schrodinger equation with external magnetic field and critical nonlinearity in R-N: (-Delta)(A)(s)u + (lambda V(x) + Z(x))u = beta f(vertical bar u vertical bar(2))u + vertical bar u vertical bar(2s)*(-2) u, where f is a continuous function satisfying Ambrosetti-Rabinowitz con- dition, and V : R-N -> R has a potential well Omega := intV(-1) (0) which possesses k disjoint bounded components Omega := boolean OR(k)(j=1)Omega(j). By using variational methods, we prove that if the parameter lambda > 0 is large enough, then the equation has at least 2(k) - 1 multi-bump solutions.
引用
收藏
页码:423 / 456
页数:34
相关论文