VOLUME GROWTH OF SUBMANIFOLDS AND THE CHEEGER ISOPERIMETRIC CONSTANT

被引:0
|
作者
Gimeno, Vicent [1 ]
Palmer, Vicente [1 ]
机构
[1] Univ Jaume 1, Dept Matemat INIT, Castellon de La Plana, Spain
关键词
Cheeger isoperimetric constant; volume growth; submanifold; Chern-Osserman inequality; INEQUALITIES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain an estimate of the Cheeger isoperimetric constant in terms of the volume growth for a properly immersed submanifold in a Riemannian manifold which possesses at least one pole and sectional curvature bounded from above.
引用
收藏
页码:3639 / 3650
页数:12
相关论文
共 50 条
  • [21] The Cheeger constant of curved tubes
    David Krejčiřík
    Gian Paolo Leonardi
    Petr Vlachopulos
    Archiv der Mathematik, 2019, 112 : 429 - 436
  • [22] The First Cheeger Constant of a Simplex
    Dmitry N. Kozlov
    Graphs and Combinatorics, 2017, 33 : 1543 - 1564
  • [23] Volume, Cheeger and Gromov
    Benjamini, I
    MATHEMATICAL RESEARCH LETTERS, 1999, 6 (02) : 151 - 153
  • [24] Asymptotic Behavior Related to Cheeger Constant for Solutions of an Exponentially Growth Equation
    de Araujo, Anderson L. A.
    Ercole, Grey
    Montenegro, Marcelo
    RESULTS IN MATHEMATICS, 2024, 79 (01)
  • [25] The First Cheeger Constant of a Simplex
    Kozlov, Dmitry N.
    GRAPHS AND COMBINATORICS, 2017, 33 (06) : 1543 - 1564
  • [26] Classilification by Cheeger constant regularization
    Chang, Hsun-Hsien
    Moura, Jose M. F.
    2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 773 - 776
  • [27] The Cheeger constant of curved tubes
    Krejcirik, David
    Leonardi, Gian Paolo
    Vlachopulos, Petr
    ARCHIV DER MATHEMATIK, 2019, 112 (04) : 429 - 436
  • [28] Asymptotic Behavior Related to Cheeger Constant for Solutions of an Exponentially Growth Equation
    Anderson L. A. de Araujo
    Grey Ercole
    Marcelo Montenegro
    Results in Mathematics, 2024, 79
  • [29] On the structure and volume growth of submanifolds in Riemannian manifolds
    Lin, Hezi
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 92 : 119 - 128