Using Lookaheads with Optimal Best-First Search

被引:0
|
作者
Stern, Roni [1 ]
Kulberis, Tamar [1 ]
Felner, Ariel [1 ]
Holte, Robert [2 ]
机构
[1] Ben Gurion Univ Negev, Informat Syst Engn, Deutsch Telekom Labs, IL-85104 Beer Sheva, Israel
[2] Univ Alberta, Dept Comp Sci, Edmonton, AB T6G 2E8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
HEURISTIC-SEARCH;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present an algorithm that exploits the complimentary benefits of best-first search (BFS) and depth-first search (DFS) by performing limited DFS lookaheads from the frontier of BFS. We show that this continuum requires significantly less memory than BFS. In addition, a time speedup is also achieved when choosing the lookahead depth correctly. We demonstrate this idea for breadth-first search and for A*. Additionally, we show that when using inconsistent heuristics, Bidirectional Pathmax (BPMX), can be implemented very easily on top of the lookahead phase. Experimental results on several domains demonstrate the benefits of all our ideas.
引用
收藏
页码:185 / 190
页数:6
相关论文
共 50 条
  • [41] Performances of parallel branch and bound algorithms with best-first search
    Mans, B
    Roucairol, C
    DISCRETE APPLIED MATHEMATICS, 1996, 66 (01) : 57 - 74
  • [42] Best-first search for property maintenance in reactive constraints systems
    Jussien, N
    Boizumault, P
    LOGIC PROGRAMMING - PROCEEDINGS OF THE 1997 INTERNATIONAL SYMPOSIUM, 1997, : 339 - 353
  • [43] A best-first search method for anytime evaluation of belief networks
    Jitnah, N
    Nicholson, AE
    PROGRESS IN CONNECTIONIST-BASED INFORMATION SYSTEMS, VOLS 1 AND 2, 1998, : 600 - 603
  • [44] Best-Case and Worst-Case Behavior of Greedy Best-First Search
    Heusner, Manuel
    Keller, Thomas
    Helmert, Malte
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 1463 - 1470
  • [45] On the Impact of Subproblem Orderings on Anytime AND/OR Best-First Search for Lower Bounds
    Lam, William
    Kask, Kalev
    Dechter, Rina
    Larrosa, Javier
    ECAI 2016: 22ND EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, 285 : 1567 - 1568
  • [46] A best-first search approach for determining starting regions in simulation optimization
    Rees, LP
    Greenwood, AG
    Siochi, FC
    IIE TRANSACTIONS, 2002, 34 (03) : 283 - 295
  • [47] Best-First Branch and Bound Search Method for Map Based Localization
    Saarinen, Jari
    Paanajarvi, Janne
    Forsman, Pekka
    2011 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2011, : 59 - 64
  • [48] An FFT-Based Technique and Best-first Search for Image Registration
    Samritjiarapon, Olan
    Chitsobhuk, Orachat
    2008 INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES, 2008, : 364 - 367
  • [49] Adding Local Exploration to Greedy Best-First Search in Satisficing Planning
    Xie, Fan
    Mueller, Martin
    Holte, Robert
    PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, : 2388 - 2394
  • [50] BFPART: Best-First PART
    Ibarguren, Igor
    Lasarguren, Aritz
    Perez, Jesus M.
    Muguerza, Javier
    Gurrutxaga, Ibai
    Arbelaitz, Olatz
    INFORMATION SCIENCES, 2016, 367 : 927 - 952