On order statistics from bivariate skew-normal and skew-tν distributions

被引:17
|
作者
Jamalizadeh, A. [2 ]
Balakrishnan, N. [1 ]
机构
[1] McMaster Univ, Hamilton, ON L8S 4K1, Canada
[2] Shahid Bahonar Univ, Kerman, Iran
基金
加拿大自然科学与工程研究理事会;
关键词
bivariate skew-normal distribution; bivariate skew-t distribution; order statistics; moment generating function; generalized skew-normal distribution; generalized skew-t distribution;
D O I
10.1016/j.jspi.2008.03.035
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we use the generalized skew-normal distribution, GSN(theta(1), theta(2), gamma), which is a special case of the unified multivariate skew-normal distribution studied recently by Arellano-Valle and Azzalini (2006), and its properties to derive the distributions of order statistics from bivariate skew-normal and bivariate skew-t(v) distributions. By using these distributional results, we also derive explicit expressions for means, variances and covariance of these order statistics. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:4187 / 4197
页数:11
相关论文
共 50 条
  • [41] Modelling interval data with Normal and Skew-Normal distributions
    Brito, Paula
    Pedro Duarte Silva, A.
    JOURNAL OF APPLIED STATISTICS, 2012, 39 (01) : 3 - 20
  • [42] Multivariate extremes of generalized skew-normal distributions
    Lysenko, Natalia
    Roy, Parthanil
    Waeber, Rolf
    STATISTICS & PROBABILITY LETTERS, 2009, 79 (04) : 525 - 533
  • [43] Skew-symmetric distributions and Fisher information: The double sin of the skew-normal
    Hallin, Marc
    Ley, Christophe
    BERNOULLI, 2014, 20 (03) : 1432 - 1453
  • [44] Discussion of ''the skew-normal''
    Genton, MG
    SCANDINAVIAN JOURNAL OF STATISTICS, 2005, 32 (02) : 189 - 198
  • [45] Geometric and statistical curvatures of the skew-t distributions and their application
    Wu, Qiaoyan
    Hu, Hongchang
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2025,
  • [46] On mixtures of skew normal and skew t-distributions
    Lee, Sharon X.
    McLachlan, Geoffrey J.
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2013, 7 (03) : 241 - 266
  • [47] Multivariate extended skew-t distributions and related families
    Arellano-Valle R.B.
    Genton M.G.
    METRON, 2010, 68 (3) : 201 - 234
  • [48] THE LOGARITHMIC SKEW-NORMAL DISTRIBUTIONS ARE MOMENT-INDETERMINATE
    Lin, Gwo Dong
    Stoyanov, Jordan
    JOURNAL OF APPLIED PROBABILITY, 2009, 46 (03) : 909 - 916
  • [49] Scale and shape mixtures of multivariate skew-normal distributions
    Arellano-Valle, Reinaldo B.
    Ferreira, Clecio S.
    Genton, Marc G.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 166 : 98 - 110
  • [50] On the non-identifiability of unified skew-normal distributions
    Wang, Kesen
    Arellano-Valle, Reinaldo B.
    Azzalini, Adelchi
    Genton, Marc G.
    STAT, 2023, 12 (01):