Hardy spaces with variable exponents on RD-spaces and applications

被引:58
|
作者
Zhuo, Ciqiang [1 ]
Sawano, Yoshihiro [2 ]
Yang, Dachun [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Tokyo Metropolitan Univ, Dept Math & Informat Sci, 1-1 Minami Ohsawa, Hachioji, Tokyo 1920397, Japan
关键词
RD-space; Hardy space; variable exponent; maximal function; atom; Littlewood-Paley function; dual space; TRIEBEL-LIZORKIN SPACES; FRACTIONAL INTEGRAL-OPERATORS; RIESZ-POTENTIALS; LEBESGUE SPACES; MORREY SPACES; BESOV-SPACES; SOBOLEV EMBEDDINGS; MAXIMAL OPERATOR; WEAK SOLUTIONS; BOUNDEDNESS;
D O I
10.4064/dm744-9-2015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, the authors introduce Hardy spaces with variable exponents, H*(,p(.)) (chi), on RD-spaces with infinite measures via the grand maximal function. Then the authors characterize these spaces by means of the non-tangential maximal function or the dyadic maximal function. Characterizations in terms of atoms or Littlewood-Paley functions are also established. As applications, the authors prove an Olsen inequality for fractional integral operators and the boundedness of singular integral operators and quasi-Banach valued sublinear operators on these spaces. Finally, a duality theory of these spaces is developed.
引用
收藏
页码:1 / 74
页数:74
相关论文
共 50 条
  • [21] Hardy’s Inequality on Hardy–Morrey Spaces with Variable Exponents
    Kwok-Pun Ho
    Mediterranean Journal of Mathematics, 2017, 14
  • [22] GENERALIZED WEIGHTED MORREY SPACES ON RD-SPACES
    Chou, Jiahui
    Li, Xue
    Tong, Yan
    Lin, Haibo
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (04) : 1277 - 1293
  • [23] Embedding theorem on RD-spaces
    Yanchang Han
    Journal of Inequalities and Applications, 2015
  • [24] Embedding theorem on RD-spaces
    Han, Yanchang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [25] Grand Generalized Weighted Morrey Spaces for RD-Spaces
    Guanghui LU
    Journal of Mathematical Research with Applications, 2023, 43 (04) : 457 - 466
  • [26] Anisotropic Hardy-Lorentz Spaces with Variable Exponents
    Almeida, Victor
    Betancor, Jorge J.
    Rodriguez-Mesa, Lourdes
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2017, 69 (06): : 1219 - 1273
  • [27] FRACTIONAL INTEGRAL ON MARTINGALE HARDY SPACES WITH VARIABLE EXPONENTS
    Hao, Zhiwei
    Jiao, Yong
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (05) : 1128 - 1145
  • [28] Molecular Decomposition of Anisotropic Hardy Spaces With Variable Exponents
    Wenhua Wang
    Xiong Liu
    Aiting Wang
    Baode Li
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 1471 - 1495
  • [29] MOLECULAR DECOMPOSITION OF ANISOTROPIC HARDY SPACES WITH VARIABLE EXPONENTS
    Wang, Wenhua
    Liu, Xiong
    Wang, Aiting
    Li, Baode
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (04): : 1471 - 1495
  • [30] Martingale transforms in martingale Hardy spaces with variable exponents
    Ma, Tao
    Lu, Jianzhong
    Wu, Xia
    AIMS MATHEMATICS, 2024, 9 (08): : 22041 - 22056