Hardy spaces with variable exponents on RD-spaces and applications

被引:58
|
作者
Zhuo, Ciqiang [1 ]
Sawano, Yoshihiro [2 ]
Yang, Dachun [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Tokyo Metropolitan Univ, Dept Math & Informat Sci, 1-1 Minami Ohsawa, Hachioji, Tokyo 1920397, Japan
关键词
RD-space; Hardy space; variable exponent; maximal function; atom; Littlewood-Paley function; dual space; TRIEBEL-LIZORKIN SPACES; FRACTIONAL INTEGRAL-OPERATORS; RIESZ-POTENTIALS; LEBESGUE SPACES; MORREY SPACES; BESOV-SPACES; SOBOLEV EMBEDDINGS; MAXIMAL OPERATOR; WEAK SOLUTIONS; BOUNDEDNESS;
D O I
10.4064/dm744-9-2015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, the authors introduce Hardy spaces with variable exponents, H*(,p(.)) (chi), on RD-spaces with infinite measures via the grand maximal function. Then the authors characterize these spaces by means of the non-tangential maximal function or the dyadic maximal function. Characterizations in terms of atoms or Littlewood-Paley functions are also established. As applications, the authors prove an Olsen inequality for fractional integral operators and the boundedness of singular integral operators and quasi-Banach valued sublinear operators on these spaces. Finally, a duality theory of these spaces is developed.
引用
收藏
页码:1 / 74
页数:74
相关论文
共 50 条
  • [1] Maximal function characterizations of Hardy spaces on RD-spaces and their applications
    Grafakos, Loukas
    Liu, LiGuang
    Yang, DaChun
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (12): : 2253 - 2284
  • [2] Maximal function characterizations of Hardy spaces on RD-spaces and their applications
    Loukas Grafakos
    LiGuang Liu
    DaChun Yang
    Science in China Series A: Mathematics, 2008, 51
  • [4] Radial maximal function characterizations of Hardy spaces on RD-spaces and their applications
    Dachun Yang
    Yuan Zhou
    Mathematische Annalen, 2010, 346 : 307 - 333
  • [5] Radial maximal function characterizations of Hardy spaces on RD-spaces and their applications
    Yang, Dachun
    Zhou, Yuan
    MATHEMATISCHE ANNALEN, 2010, 346 (02) : 307 - 333
  • [6] RADIAL MAXIMAL FUNCTION CHARACTERIZATIONS FOR HARDY SPACES ON RD-SPACES
    Grafakos, Loukas
    Liu, Liguang
    Yang, Dachun
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2009, 137 (02): : 225 - 251
  • [7] Boundedness of sublinear operators in Hardy spaces on RD-spaces via atoms
    Yang, Dachun
    Zhou, Yuan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 339 (01) : 622 - 635
  • [8] Hardy spaces with variable exponents and generalized Campanato spaces
    Nakai, Eiichi
    Sawano, Yoshihiro
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (09) : 3665 - 3748
  • [9] MARTINGALE HARDY SPACES WITH VARIABLE EXPONENTS
    Jiao, Yong
    Zhou, Dejian
    Hao, Zhiwei
    Chen, Wei
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 10 (04): : 750 - 770
  • [10] Variable Anisotropic Hardy Spaces with Variable Exponents
    Yang, Zhenzhen
    Yang, Yajuan
    Sun, Jiawei
    Li, Baode
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2021, 9 (01): : 65 - 89