Feature Learning and Signal Propagation in Deep Neural Networks

被引:0
|
作者
Lou, Yizhang [1 ]
Mingard, Chris [2 ,3 ]
Hayou, Soufiane [4 ]
机构
[1] Univ Oxford, St Johns Coll, Oxford, England
[2] Univ Oxford, PTCL, Oxford, England
[3] Univ Oxford, Dept Phys, Oxford, England
[4] Natl Univ Singapore, Dept Math, Singapore, Singapore
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent work by Baratin et al. (2021) sheds light on an intriguing pattern that occurs during the training of deep neural networks: some layers align much more with data compared to other layers (where the alignment is defined as the euclidean product of the tangent features matrix and the data labels matrix). The curve of the alignment as a function of layer index (generally) exhibits an ascent-descent pattern where the maximum is reached for some hidden layer. In this work, we provide the first explanation for this phenomenon. We introduce the Equilibrium Hypothesis which connects this alignment pattern to signal propagation in deep neural networks. Our experiments demonstrate an excellent match with the theoretical predictions.
引用
收藏
页数:35
相关论文
共 50 条
  • [41] Shortcut learning in deep neural networks
    Robert Geirhos
    Jörn-Henrik Jacobsen
    Claudio Michaelis
    Richard Zemel
    Wieland Brendel
    Matthias Bethge
    Felix A. Wichmann
    Nature Machine Intelligence, 2020, 2 : 665 - 673
  • [42] Fast learning in Deep Neural Networks
    Chandra, B.
    Sharma, Rajesh K.
    NEUROCOMPUTING, 2016, 171 : 1205 - 1215
  • [43] Deep associative learning for neural networks
    Liu, Jia
    Zhang, Wenhua
    Liu, Fang
    Xiao, Liang
    NEUROCOMPUTING, 2021, 443 (443) : 222 - 234
  • [44] Collaborative Learning for Deep Neural Networks
    Song, Guocong
    Chai, Wei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [45] Big learning and deep neural networks
    Montavon, Grégoire
    Müller, Klaus-Robert
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2012, 7700 LECTURE NO : 419 - 420
  • [46] Multiplierless Neural Networks for Deep Learning
    Banduka, Maja Lutovac
    Lutovac, Miroslav
    2024 13TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING, MECO 2024, 2024, : 262 - 265
  • [47] Shortcut learning in deep neural networks
    Geirhos, Robert
    Jacobsen, Joern-Henrik
    Michaelis, Claudio
    Zemel, Richard
    Brendel, Wieland
    Bethge, Matthias
    Wichmann, Felix A.
    NATURE MACHINE INTELLIGENCE, 2020, 2 (11) : 665 - 673
  • [48] Towards Interpretable Deep Learning: A Feature Selection Framework for Prognostics and Health Management Using Deep Neural Networks
    Barraza, Joaquin Figueroa
    Droguett, Enrique Lopez
    Martins, Marcelo Ramos
    SENSORS, 2021, 21 (17)
  • [49] Brain signal based human emotion analysis by circular back propagation and Deep Kohonen Neural Networks
    Hemanth, D. Jude
    Anitha, J.
    Le Hoang Son
    COMPUTERS & ELECTRICAL ENGINEERING, 2018, 68 : 170 - 180
  • [50] Deep Convolutional Neural Networks as Generic Feature Extractors
    Hertel, Lars
    Barth, Erhardt
    Kaester, Thomas
    Martinetz, Thomas
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,