TAUTOLOGICAL RING OF THE MODULI SPACE OF GENERALISED PARABOLIC LINE BUNDLES ON A CURVE

被引:1
|
作者
Iyer, Jaya N. N. [1 ]
机构
[1] Inst Math Sci, Madras 600113, Tamil Nadu, India
关键词
Chow groups; Nodal curve; Parabolic line bundles; NODAL CURVES;
D O I
10.1080/00927872.2012.722737
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we consider the tautological ring containing the extended Brill-Noether algebraic classes on the normalization of the compactified Jacobian of a complex nodal projective curve (with one node). This smallest -subalgebra of algebraic classes under algebraic equivalence, stable under extensions of the maps induced by multiplication maps, Pontrayagin product and Fourier transform, is shown to be generated by pullback of the Brill-Noether classes of the Jacobian of the normalized curve and some natural classes.
引用
收藏
页码:755 / 763
页数:9
相关论文
共 50 条
  • [31] The line bundles on the moduli of parabolic G-bundles over curves and their sections
    Laszlo, Y
    Sorger, C
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1997, 30 (04): : 499 - 525
  • [32] On Abel-Jacobi maps of moduli of parabolic bundles over a curve
    Chakraborty, Sujoy
    arXiv, 2020,
  • [33] On Abel-Jacobi maps of moduli of parabolic bundles over a curve
    Chakraborty, Sujoy
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (09) : 3720 - 3726
  • [34] Hodge classes of moduli spaces of parabolic bundles over the general curve
    Biswas, I
    Narasimhan, MS
    JOURNAL OF ALGEBRAIC GEOMETRY, 1997, 6 (04) : 697 - 715
  • [35] Geometric quantization for the moduli space of vector bundles with parabolic structure
    Daskalopoulos, GD
    Wentworth, RA
    GEOMETRY, TOPOLOGY AND PHYSICS, 1997, : 119 - 155
  • [36] Moduli space of parabolic vector bundles over hyperelliptic curves
    Suratno Basu
    Sarbeswar Pal
    Proceedings - Mathematical Sciences, 2018, 128
  • [37] Torelli theorem for the moduli space of symplectic parabolic Higgs bundles
    Roy, Sumit
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 168
  • [38] Parabolic Bundles on Algebraic Surfaces II - Irreducibility of the Moduli Space
    Balaji, V.
    Dey, A.
    VECTOR BUNDLES AND COMPLEX GEOMETRY, 2010, 522 : 7 - +
  • [39] Moduli space of parabolic vector bundles over hyperelliptic curves
    Basu, Suratno
    Pal, Sarbeswar
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (05):
  • [40] VARIATIONS OF MODULI OF PARABOLIC BUNDLES
    BODEN, HU
    HU, Y
    MATHEMATISCHE ANNALEN, 1995, 301 (03) : 539 - 559