Improving CO2 permeability in polymerized room-temperature ionic liquid gas separation membranes through the formation of a solid composite with a room-temperature ionic liquid

被引:214
|
作者
Bara, Jason E. [1 ,2 ]
Hatakeyama, Evan S. [1 ]
Gin, Douglas L. [1 ,2 ]
Noble, Richard D. [1 ]
机构
[1] Univ Colorado, Dept Biol & Chem Engn, Boulder, CO 80309 USA
[2] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA
关键词
CO2; room-temperature ionic liquid; membrane; polymer; synthesis;
D O I
10.1002/pat.1209
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Room-temperature ionic liquids (RTILs) present a number of unique opportunities for the processing and tailoring of polymer materials for applications including ion conduction polymers, catalysis, and gas separations. Perhaps most importantly, RTILs can be synthesized as monomers and polymerized in the presence of non-polymerizable RTILs to provide solid composites with enhanced properties. These features allow for the formation of poly(RTIL)-RTIL composite gas separation membranes, exhibiting hybrid properties of both RTILs and polymers. Incorporation of just 20 mol% free RTIL in the polymer membrane yields a stable composite material with a CO2 permeability increase of similar to 400% with a 33% improvement to CO2/N-2 selectivity relative to the analogous poly(RTIL) membrane lacking any free ion pairs. The composite membrane also showed a significant improvement in CO2/CH4 separation compared to other poly(RTILs) when analyzed via "Robeson Plots." This new approach to polymer gas separation membranes provides a powerful method to improve the performance of current materials without intensive organic synthesis. Copyright (C) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:1415 / 1420
页数:6
相关论文
共 50 条
  • [31] Reducing CO2 using room-temperature ionic liquids
    Ramana G. Reddy
    JOM, 2008, 60 : 33 - 33
  • [32] Reducing CO2 using room-temperature ionic liquids
    Reddy, Ramana G.
    JOM, 2008, 60 (02) : 33 - 33
  • [33] Anisotropic ionogels of sodium laurate in a room-temperature ionic liquid
    Jiang, Wenqing
    Hao, Jingcheng
    Wu, Zhonghua
    LANGMUIR, 2008, 24 (07) : 3150 - 3156
  • [34] Ruthenium electrodeposition on silicon from a room-temperature ionic liquid
    Raz, Ofer
    Cohn, Gil
    Freyland, Werner
    Mann, Olivier
    Ein-Eli, Yair
    ELECTROCHIMICA ACTA, 2009, 54 (25) : 6042 - 6045
  • [35] Critical Scattering in Room-Temperature Ionic Liquid–Propanol Solutions
    Hiroshi Abe
    Fumiya Nemoto
    Shinichiro Ozawa
    Journal of Solution Chemistry, 2021, 50 : 220 - 231
  • [36] Charge-Induced Birefringence in a Room-Temperature Ionic Liquid
    Wang, Yufeng
    Swain, Greg M.
    Blanchard, G. J.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2021, 125 (03): : 950 - 955
  • [37] Study on the extraction of dyes into a room-temperature ionic liquid and their mechanisms
    Li, Changping
    Xin, Baoping
    Xu, Wenguo
    Zhang, Qi
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2007, 82 (02) : 196 - 204
  • [38] NUMERICAL SIMULATIONS OF THE CAVITATION PROCESS IN A ROOM-TEMPERATURE IONIC LIQUID
    Zhang, Hai-xiao
    Gao, Bin
    Yang, Yue-tao
    Zhang, Shu-yi
    Liu, Xiao-jun
    2013 SYMPOSIUM ON PIEZOELECTRICITY, ACOUSTIC WAVES AND DEVICE APPLICATIONS (SPAWDA), 2013, : 167 - 169
  • [39] Polarity of room-temperature ionic liquid as examined by EPR spectroscopy
    Kawai, A
    Hidemori, T
    Shibuya, K
    CHEMISTRY LETTERS, 2004, 33 (11) : 1464 - 1465
  • [40] Infrared Spectroscopy of a Wilkinson Catalyst in a Room-Temperature Ionic Liquid
    Kiefer, Johannes
    Obert, Katharina
    Himmler, Simone
    Schulz, Peter S.
    Wasserscheid, Peter
    Leipertz, Alfred
    CHEMPHYSCHEM, 2008, 9 (15) : 2207 - 2213