Interactive Ranking Uncertain Multivariate Ordinal Time Series

被引:0
|
作者
Jia, Shichao [1 ]
Wang, Jiaqi [1 ]
Li, Zeyu [1 ]
Zhang, Jiawan [1 ]
机构
[1] Tianjin Univ, Tianjin, Peoples R China
来源
2019 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST) | 2019年
关键词
Human-centered computing; Visualization; Visual analytics;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work proposes a visual analytic technique to interactive rank uncertain multivariate ordinal time series for situational awareness. We use normalized entropy to quantify the uncertainty of the discrete survey data. The heatmap summarizes both the survey data and qualified uncertainty in a compact manner. Besides, the distributions of votes in neighborhoods are visualized using hexagons. This work presents the result of applying the solution to the VAST 2019 - Mini-Challenge 1 dataset, which led to the Award for Excellent Quantification of Abnormalities.
引用
收藏
页码:108 / 109
页数:2
相关论文
共 50 条
  • [21] Multiple criteria choice, ranking, and sorting in the presence of ordinal data and interactive points of view
    Roubens, M
    FUZZY SETS AND SYSTEMS - IFSA 2003, PROCEEDINGS, 2003, 2715 : 30 - 38
  • [22] An Interactive Threshold-Setting Procedure for Improved Multivariate Anomaly Detection in Time Series
    Lundstrom, Adam
    O'Nils, Mattias
    Qureshi, Faisal Z.
    IEEE ACCESS, 2023, 11 : 93898 - 93907
  • [23] TIFE: Tree-Structured Interactive Feature Enhancement for Multivariate Time Series Forecasting
    Wang, Yixiang
    Li, Haonan
    Zhang, Zhenguo
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT VI, ICIC 2024, 2024, 14880 : 134 - 145
  • [24] Characterizing stochastic time series with ordinal networks
    Pessa, Arthur A. B.
    Ribeiro, Haroldo, V
    PHYSICAL REVIEW E, 2019, 100 (04)
  • [25] Time series ordinal classification via shapelets
    Guijo-Rubio, David
    Gutierrez, Pedro A.
    Bagnall, Anthony
    Hervas-Martinez, Cesar
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [26] Structural change detection in ordinal time series
    Li, Fuxiao
    Hao, Mengli
    Yang, Lijuan
    PLOS ONE, 2021, 16 (08):
  • [27] Regenerating time series from ordinal networks
    McCullough, Michael
    Sakellariou, Konstantinos
    Stemler, Thomas
    Small, Michael
    CHAOS, 2017, 27 (03)
  • [28] The Arrow of Time in Multivariate Time Series
    Bauer, Stefan
    Schoelkopf, Bernhard
    Peters, Jonas
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [29] Uncertain Time Series Classification
    Mbouopda, Michael Franklin
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 4903 - 4904
  • [30] Ordinal synchronization: Using ordinal patterns to capture interdependencies between time series
    Echegoyen, I.
    Vera-Avila, V.
    Sevilla-Escoboza, R.
    Martinez, J. H.
    Buldu, J. M.
    CHAOS SOLITONS & FRACTALS, 2019, 119 : 8 - 18