On the characterization of the controllability property for linear control systems on nonnilpotent, solvable three-dimensional Lie groups

被引:17
|
作者
Ayala, Victor [1 ]
Da Silva, Adriano [2 ]
机构
[1] Univ Tarapaca, Inst Alta Invest, Sede Iquique, Iquique, Chile
[2] Univ Estadual Campinas, Inst Matemat, Cx Postal 6065, BR-13081970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Solvable Lie groups; Linear control systems; Derivation; Controllability;
D O I
10.1016/j.jde.2018.12.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we show that a complete characterization of the controllability property for linear control system on three-dimensional solvable nonnilpotent Lie groups is possible by the LARC and the knowledge of the eigenvalues of the derivation associated with the drift of the system. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:8233 / 8257
页数:25
相关论文
共 50 条
  • [41] Control sets of linear systems on Lie groups
    Ayala, Victor
    Da Silva, Adriano
    Zsigmond, Guilherme
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2017, 24 (01):
  • [42] On local isometric embeddings of three-dimensional Lie groups
    Yoshio Agaoka
    Takahiro Hashinaga
    Geometriae Dedicata, 2020, 205 : 191 - 219
  • [43] Sectional and Ricci Curvature for Three-Dimensional Lie Groups
    Thompson, Gerard
    Bhattarai, Giriraj
    JOURNAL OF MATHEMATICS, 2016, 2016
  • [44] Jacobi structures on real two- and three-dimensional Lie groups and their Jacobi-Lie systems
    Amirzadeh-Fard, H.
    Haghighatdoost, G.
    Kheradmandynia, P.
    Rezaei-Aghdam, A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 205 (02) : 1393 - 1410
  • [45] PARALLEL SURFACES IN THREE-DIMENSIONAL LORENTZIAN LIE GROUPS
    Calvaruso, Giovanni
    Van der Veken, Joeri
    TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (01): : 223 - 250
  • [46] Generalised killing spinors on three-dimensional Lie groups
    Artacho, Diego
    MANUSCRIPTA MATHEMATICA, 2025, 176 (01)
  • [47] Invariant Ricci collineations on three-dimensional Lie groups
    Calvino-Louzao, E.
    Seoane-Bascoy, J.
    Vazquez-Abal, M. E.
    Vazquez-Lorenzo, R.
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 96 : 59 - 71
  • [48] On local isometric embeddings of three-dimensional Lie groups
    Agaoka, Yoshio
    Hashinaga, Takahiro
    GEOMETRIAE DEDICATA, 2020, 205 (01) : 191 - 219
  • [49] Approximate tracking for systems on three-dimensional matrix lie groups via feedback nilpotentization
    Struemper, H
    Krishnaprasad, PS
    ROBOT CONTROL 1997, VOLS 1 AND 2, 1998, : 25 - 32
  • [50] Classification of real three-dimensional Lie bialgebras and their Poisson-Lie groups
    Rezaei-Aghdam, A
    Hemmati, M
    Rastkar, AR
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (18): : 3981 - 3994