Landau gauge ghost propagator and running coupling in SU(2) lattice gauge theory

被引:10
|
作者
Bornyakov, V. G. [1 ,2 ,3 ]
Ilgenfritz, E. -M. [4 ]
Litwinski, C. [5 ]
Mueller-Preussker, M. [5 ]
Mitrjushkin, V. K. [1 ,4 ]
机构
[1] Kurchatov Inst, Inst High Energy Phys NRC, Protvino 142281, Russia
[2] Inst Theoret & Expt Phys, Moscow 117259, Russia
[3] Far Eastern Fed Univ, Sch Biomed, Vladivostok 690950, Russia
[4] BLTP, Joint Inst Nucl Res, Dubna 141980, Russia
[5] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
来源
PHYSICAL REVIEW D | 2015年 / 92卷 / 07期
关键词
YANG-MILLS THEORY; INFRARED BEHAVIOR; GLUON PROPAGATOR; GRIBOV COPIES; COLOR CONFINEMENT; GREEN-FUNCTIONS; QCD; EXPONENTS;
D O I
10.1103/PhysRevD.92.074505
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study finite (physical) volume and scaling violation effects of the Landau gauge ghost propagator as well as of the running coupling alpha(s)(p) in the SU(2) lattice gauge theory. We consider lattices with physical linear sizes between aL similar or equal to 3 and aL similar or equal to 7 fm and values of lattice spacing between a = 0.2 and a = 0.07 fm. To fix the gauge we apply an efficient gauge fixing method aimed at finding extrema as close as possible to the global maximum of the gauge functional. We find finite volume effects to be small for the lattice size aL similar or equal to 3 fm at momenta vertical bar p vertical bar greater than or similar to 0.6 GeV. For the same lattice size we study extrapolations to the continuum limit of the ghost dressing function as well as for the running coupling with momenta chosen between vertical bar p vertical bar = 0.41 and vertical bar p vertical bar = 3.2 GeV. We present fit formulas for the continuum limit of both observables in this momentum range. Our results testify in favor of the decoupling behavior in the infrared limit.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Vortices in SU(2) lattice gauge theory
    Cheluvaraja, S
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2001, 94 : 490 - 493
  • [32] Center vortices and the quark propagator in SU(2) gauge theory
    Bowman, Patrick O.
    Langfeld, Kurt
    Leinweber, Derek B.
    O'Cais, Alan
    Sternbeck, Andre
    von Smekal, Lorenz
    Williams, Anthony G.
    PHYSICAL REVIEW D, 2008, 78 (05):
  • [33] Propagators in Coulomb gauge from SU(2) lattice gauge theory
    Langfeld, K
    Moyaerts, L
    PHYSICAL REVIEW D, 2004, 70 (07):
  • [34] The ghost propagator in Coulomb gauge
    Watson, P.
    Reinhardt, H.
    IX INTERNATIONAL CONFERENCE ON QUARK CONFINEMENT AND THE HADRON SPECTRUM (QCHS IX), 2011, 1343 : 197 - 199
  • [35] Lattice Landau gauge gluon propagator: Lattice spacing and volume dependence
    Oliveira, Orlando
    Silva, Paulo J.
    PHYSICAL REVIEW D, 2012, 86 (11):
  • [36] Correlation of the ghost and the quark in the lattice Landau gauge QCD
    Furui, Sadataka
    Nakajima, Hideo
    BRAZILIAN JOURNAL OF PHYSICS, 2007, 37 (1B) : 186 - 192
  • [37] LATTICE RESULTS ON GLUON AND GHOST PROPAGATORS IN LANDAU GAUGE
    Bogolubsky, I. L.
    Bornyakov, V. G.
    Burgio, G.
    Mitrjushkin, V. K.
    PARTICLE PHYSICS ON THE EVE OF LHC, 2009, : 326 - +
  • [38] Quark propagator in the Landau gauge
    Skullerud, JI
    Williams, AG
    PHYSICAL REVIEW D, 2001, 63 (05)
  • [39] Modeling the Landau-gauge ghost propagator in 2, 3, and 4 spacetime dimensions
    Cucchieri, Attilio
    Dudal, David
    Mendes, Tereza
    Vandersickel, Nele
    PHYSICAL REVIEW D, 2016, 93 (09)
  • [40] The infrared Landau gauge gluon propagator from lattice QCD
    Oliveira, O
    Silva, PJ
    QUARK CONFINEMENT AND THE HADRON SPECTRUM VI, 2005, 756 : 290 - 292