Reductions of Darboux transformations for the PT-symmetric nonlocal Davey-Stewartson equations

被引:32
|
作者
Yang, Bo
Chen, Yong [1 ]
机构
[1] East China Normal Univ, Shanghai Key Lab Trustworthy Comp, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金;
关键词
PT-symmetric nonlocal; Davey-Stewartson equations; Darboux transformation; Rogue waves; SOLITONS;
D O I
10.1016/j.aml.2017.12.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this letter, a study of the reductions of the Darboux transformations (DTs) for the PT-symmetric nonlocal Davey-Stewartson (DS) equations is presented. Firstly, a binary DT is constructed in integral form for the PT-symmetric nonlocal DS-I equation. Secondly, an elementary DT is constructed in differential form for the PT-symmetric nonlocal DS-II equation. Afterwards, a new binary DT in integral form is also found for the nonlocal DS-II equation. Moreover, it is shown that the symmetry properties in the corresponding Lax-pairs of the equations are well preserved through these DTs. Thirdly, based on above DTs, the fundamental rogue waves and rational travelling waves are obtained. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:43 / 49
页数:7
相关论文
共 50 条
  • [21] Homoclinic orbits of the Davey-Stewartson equations
    Zhang Jun
    Guo Bo-ling
    Shen Shou-feng
    Applied Mathematics and Mechanics, 2005, 26 (2) : 139 - 141
  • [22] ON THE INTEGRABILITY OF EQUATIONS OF DAVEY-STEWARTSON TYPE
    SHULMAN, EI
    THEORETICAL AND MATHEMATICAL PHYSICS, 1983, 56 (01) : 720 - 724
  • [23] Galerkin methods for the Davey-Stewartson equations
    Gao, Yali
    Mei, Liquan
    Li, Rui
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 328 : 144 - 161
  • [24] Homoclinic orbits of the Davey-Stewartson equations
    Zhang, J
    Guo, BL
    Shen, SF
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2005, 26 (02) : 139 - 141
  • [25] Soliton solutions to the nonlocal Davey-Stewartson III equation
    Fu, Heming
    Ruan, Chenzhen
    Hu, Weiying
    MODERN PHYSICS LETTERS B, 2021, 35 (01):
  • [26] Rogue waves of the nonlocal Davey-Stewartson I equation
    Rao, Jiguang
    Zhang, Yongshuai
    Fokas, Athanassios S.
    He, Jingsong
    NONLINEARITY, 2018, 31 (09) : 4090 - 4107
  • [27] ON A STRUCTURE OF THE EXPLICIT SOLUTIONS TO THE DAVEY-STEWARTSON EQUATIONS
    PELINOVSKY, D
    PHYSICA D-NONLINEAR PHENOMENA, 1995, 87 (1-4) : 115 - 122
  • [28] Energy Scattering for the Generalized Davey-Stewartson Equations
    Cheng-chun Hao
    Acta Mathematicae Applicatae Sinica, 2003, 19 (2) : 333 - 340
  • [29] ON THE CAUCHY-PROBLEM FOR THE DAVEY-STEWARTSON EQUATIONS
    GHIDAGLIA, JM
    SAUT, JC
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1989, 308 (04): : 115 - 120
  • [30] On classification of integrable Davey-Stewartson type equations
    Huard, Benoit
    Novikov, Vladimir
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (27)