The Kahler-Ricci Flow on Projective Bundles

被引:23
|
作者
Song, Jian [1 ]
Szekelyhidi, Gabor [2 ]
Weinkove, Ben [3 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[2] Columbia Univ, Dept Math, New York, NY 10027 USA
[3] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
EINSTEIN METRICS; SCALAR CURVATURE; CONVERGENCE; MANIFOLDS; STABILITY;
D O I
10.1093/imrn/rnr265
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the behavior of the Kahler-Ricci flow on projective bundles. We show that if the initial metric is in a suitable Kahler class, then the fibers collapse in finite time and the metrics converge subsequentially in the Gromov-Hausdorff sense to a metric on the base.
引用
收藏
页码:243 / 257
页数:15
相关论文
共 50 条
  • [41] On stability and the convergence of the Kahler-Ricci flow
    Phong, DH
    Sturm, J
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2006, 72 (01) : 149 - 168
  • [42] The Kahler-Ricci Flow on Fano Manifolds
    Cao, Huai-Dong
    INTRODUCTION TO THE KAHLER-RICCI FLOW, 2013, 2086 : 239 - 297
  • [43] The Kahler-Ricci flow through singularities
    Song, Jian
    Tian, Gang
    INVENTIONES MATHEMATICAE, 2017, 207 (02) : 519 - 595
  • [44] On the Kahler-Ricci flow on complex surfaces
    Phong, D. H.
    Sturm, Jacob
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2005, 1 (02) : 405 - 413
  • [45] Limits of solutions to the Kahler-Ricci flow
    Cao, HD
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1997, 45 (02) : 257 - 272
  • [46] Positivity of Ricci curvature under the Kahler-Ricci flow
    Knopf, D
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2006, 8 (01) : 123 - 133
  • [47] THE KAHLER-RICCI FLOW AND OPTIMAL DEGENERATIONS
    Dervan, Ruadhai
    Szekelyhidi, Gabor
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2020, 116 (01) : 187 - 203
  • [48] Regularizing Properties of the Kahler-Ricci Flow
    Boucksom, Sebastien
    Guedj, Vincent
    INTRODUCTION TO THE KAHLER-RICCI FLOW, 2013, 2086 : 189 - 237
  • [49] An Introduction to the Kahler-Ricci Flow Introduction
    Boucksom, Sebastien
    Eyssidieux, Philippe
    Guedj, Vincent
    INTRODUCTION TO THE KAHLER-RICCI FLOW, 2013, 2086 : 1 - 6
  • [50] The Kahler-Ricci flow on pseudoconvex domains
    Ge, Huabin
    Lin, Aijin
    Shen, Liangming
    MATHEMATICAL RESEARCH LETTERS, 2019, 26 (06) : 1603 - 1627