Spatiotemporal hurdle models for zero-inflated count data: Exploring trends in emergency department visits
被引:23
|
作者:
Neelon, Brian
论文数: 0引用数: 0
h-index: 0
机构:
Durham VAMC, Ctr Hlth Serv Res Primary Care, Durham, NC USA
Duke Univ, Dept Biostat & Bioinformat, Durham, NC 27706 USADurham VAMC, Ctr Hlth Serv Res Primary Care, Durham, NC USA
Neelon, Brian
[1
,2
]
Chang, Howard H.
论文数: 0引用数: 0
h-index: 0
机构:
Emory Univ, Dept Biostat, Atlanta, GA 30322 USADurham VAMC, Ctr Hlth Serv Res Primary Care, Durham, NC USA
Chang, Howard H.
[3
]
Ling, Qiang
论文数: 0引用数: 0
h-index: 0
机构:
Emory Univ, Dept Biostat, Atlanta, GA 30322 USADurham VAMC, Ctr Hlth Serv Res Primary Care, Durham, NC USA
Ling, Qiang
[3
]
Hastings, Nicole S.
论文数: 0引用数: 0
h-index: 0
机构:
Durham VAMC, Ctr Hlth Serv Res Primary Care, Durham, NC USA
Duke Univ, Sch Med, Dept Med, Durham, NC 27706 USA
Durham VAMC, Geriatr Res Educ & Clin Ctr, Durham, NC USADurham VAMC, Ctr Hlth Serv Res Primary Care, Durham, NC USA
Hastings, Nicole S.
[1
,4
,5
]
机构:
[1] Durham VAMC, Ctr Hlth Serv Res Primary Care, Durham, NC USA
[2] Duke Univ, Dept Biostat & Bioinformat, Durham, NC 27706 USA
[3] Emory Univ, Dept Biostat, Atlanta, GA 30322 USA
[4] Duke Univ, Sch Med, Dept Med, Durham, NC 27706 USA
[5] Durham VAMC, Geriatr Res Educ & Clin Ctr, Durham, NC USA
emergency department use;
generalized Poisson distribution;
hurdle model;
overdispersion;
spatiotemporal model;
zero inflation;
POISSON;
WINBUGS;
D O I:
10.1177/0962280214527079
中图分类号:
R19 [保健组织与事业(卫生事业管理)];
学科分类号:
摘要:
Motivated by a study exploring spatiotemporal trends in emergency department use, we develop a class of two-part hurdle models for the analysis of zero-inflated areal count data. The models consist of two components-one for the probability of any emergency department use and one for the number of emergency department visits given use. Through a hierarchical structure, the models incorporate both patient-and region-level predictors, as well as spatially and temporally correlated random effects for each model component. The random effects are assigned multivariate conditionally autoregressive priors, which induce dependence between the components and provide spatial and temporal smoothing across adjacent spatial units and time periods, resulting in improved inferences. To accommodate potential overdispersion, we consider a range of parametric specifications for the positive counts, including truncated negative binomial and generalized Poisson distributions. We adopt a Bayesian inferential approach, and posterior computation is handled conveniently within standard Bayesian software. Our results indicate that the negative binomial and generalized Poisson hurdle models vastly outperform the Poisson hurdle model, demonstrating that overdispersed hurdle models provide a useful approach to analyzing zero-inflated spatiotemporal data.
机构:
Columbia Univ, Dept Psychiat, New York, NY USANew York State Psychiat Inst & Hosp, New York, NY 10032 USA
Hu, Mei-Chen
Pavlicova, Martina
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Mailman Sch Publ Hlth, Dept Biostat, New York, NY USANew York State Psychiat Inst & Hosp, New York, NY 10032 USA
Pavlicova, Martina
Nunes, Edward V.
论文数: 0引用数: 0
h-index: 0
机构:
New York State Psychiat Inst & Hosp, New York, NY 10032 USA
Columbia Univ, Dept Psychiat, New York, NY USANew York State Psychiat Inst & Hosp, New York, NY 10032 USA
Nunes, Edward V.
AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE,
2011,
37
(05):
: 367
-
375