Absolutely summing multilinear operators via interpolation

被引:8
|
作者
Albuquerque, Nacib [1 ]
Nunez-Alarcon, Daniel [2 ]
Santos, Joedson [1 ]
Serrano-Rodriguez, Diana Marcela [2 ]
机构
[1] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
[2] Univ Fed Pernambuco, Dept Matemat, BR-50740560 Recife, PE, Brazil
关键词
Absolutely summing operators; Bohnenblust-Hille inequality; BOHNENBLUST-HILLE INEQUALITY; CONSTANTS;
D O I
10.1016/j.jfa.2015.07.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use an interpolative technique from [1] to introduce the notion of multiple N-separately summing operators. Our approach extends and unifies some recent results; for instance we recover the best known estimates of the multilinear Bohnenblust-Hille constants due to F. Bayart, D. Pellegrino and J. Seoane-Sepulveda. More precisely, as a consequence of our main result, for 1 <= t < 2 and m > 1 we prove that (Sigma(infinity)(i1,...,im=1) vertical bar U (e(i1), ... , e(im))vertical bar(2tm/2+(m-1)t))(2+(m-1)t/2tm) <= [Pi(m)(j=2) Gamma (2 - 2 - t/jt - 2t + 2)(t(j-2)+2/2t-2jt)] parallel to U parallel to for all complex m-linear forms U: c(0) x ... x c(0) --> C. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1636 / 1651
页数:16
相关论文
共 50 条
  • [21] Cotype and absolutely summing linear operators
    Botelho, Geraldo
    Pellegrino, Daniel
    Rueda, Pilar
    MATHEMATISCHE ZEITSCHRIFT, 2011, 267 (1-2) : 1 - 7
  • [22] Absolutely summing operators on Besov spaces
    Fugarolas, MA
    HOUSTON JOURNAL OF MATHEMATICS, 1998, 24 (01): : 127 - 136
  • [23] 2 REMARKS ON ABSOLUTELY SUMMING OPERATORS
    BELANGER, A
    DOWLING, PN
    MATHEMATISCHE NACHRICHTEN, 1988, 136 : 229 - 232
  • [24] ELEMENTARY CHARACTERIZATION OF ABSOLUTELY SUMMING OPERATORS
    DIESTEL, J
    MATHEMATISCHE ANNALEN, 1972, 196 (02) : 101 - &
  • [25] ABSOLUTELY SUMMING OPERATORS ON HILBERT SPACE
    BENNETT, G
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A326 - A326
  • [26] Cotype and absolutely summing linear operators
    Geraldo Botelho
    Daniel Pellegrino
    Pilar Rueda
    Mathematische Zeitschrift, 2011, 267 : 1 - 7
  • [27] RANDOM MATRICES AND ABSOLUTELY SUMMING OPERATORS
    BENNETT, G
    GOODMAN, V
    NEWMAN, C
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (03): : A384 - A385
  • [28] Nonlinear absolutely summing operators revisited
    Bernardino, A. T.
    Pellegrino, D.
    Seoane-Sepulveda, J. B.
    Souza, M. L. V.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2015, 46 (02): : 205 - 249
  • [30] On coincidence results for summing multilinear operators: interpolation, l1-spaces and cotype
    Bayart, Frederic
    Pellegrino, Daniel
    Rueda, Pilar
    COLLECTANEA MATHEMATICA, 2020, 71 (02) : 301 - 318