Absolutely summing multilinear operators via interpolation

被引:8
|
作者
Albuquerque, Nacib [1 ]
Nunez-Alarcon, Daniel [2 ]
Santos, Joedson [1 ]
Serrano-Rodriguez, Diana Marcela [2 ]
机构
[1] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
[2] Univ Fed Pernambuco, Dept Matemat, BR-50740560 Recife, PE, Brazil
关键词
Absolutely summing operators; Bohnenblust-Hille inequality; BOHNENBLUST-HILLE INEQUALITY; CONSTANTS;
D O I
10.1016/j.jfa.2015.07.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use an interpolative technique from [1] to introduce the notion of multiple N-separately summing operators. Our approach extends and unifies some recent results; for instance we recover the best known estimates of the multilinear Bohnenblust-Hille constants due to F. Bayart, D. Pellegrino and J. Seoane-Sepulveda. More precisely, as a consequence of our main result, for 1 <= t < 2 and m > 1 we prove that (Sigma(infinity)(i1,...,im=1) vertical bar U (e(i1), ... , e(im))vertical bar(2tm/2+(m-1)t))(2+(m-1)t/2tm) <= [Pi(m)(j=2) Gamma (2 - 2 - t/jt - 2t + 2)(t(j-2)+2/2t-2jt)] parallel to U parallel to for all complex m-linear forms U: c(0) x ... x c(0) --> C. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1636 / 1651
页数:16
相关论文
共 50 条