Separable convexification and DCA techniques for capacity and flow assignment problems

被引:1
|
作者
Mahey, P [1 ]
Phong, TQ
Luna, HPL
机构
[1] Univ Clermont Ferrand, CNRS, LIMOS, Aubiere, France
[2] Univ Fed Minas Gerais, DCC ICeX, Belo Horizonte, MG, Brazil
来源
RAIRO-RECHERCHE OPERATIONNELLE-OPERATIONS RESEARCH | 2001年 / 35卷 / 02期
关键词
network design; DC optimization; capacity and flow assignment;
D O I
10.1051/ro:2001114
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study a continuous version of the capacity and flow assignment problem (CFA) where the design cost is combined with an average delay measure to yield a non convex objective function coupled with multicommodity flow constraints. A separable convexification of each arc cost function is proposed to obtain approximate feasible solutions within easily computable gaps from optimality. On the other hand, DC (difference of convex functions) programming can be used to compute accurate upper bounds and reduce the gap. The technique is shown to be effective when topology is assumed fixed and capacity expansion on some arcs is considered.
引用
收藏
页码:269 / 281
页数:13
相关论文
共 50 条
  • [21] A Partitioned ∈-Relaxation Algorithm for Separable Convex Network Flow Problems
    Renato De Leone
    Robert R. Meyer
    Armand Zakarian
    Computational Optimization and Applications, 1999, 12 : 107 - 126
  • [22] An ε-relaxation method for separable convex cost network flow problems
    Bertsekas, DP
    Polymenakos, LC
    Tseng, P
    SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (03) : 853 - 870
  • [23] A partitioned ε-relaxation algorithm for separable convex network flow problems
    De Leone, R
    Meyer, RR
    Zakarian, A
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 1999, 12 (1-3) : 107 - 126
  • [24] Approximation techniques techniques of optimal control problems for fractional dynamic systems in separable Hilbert spaces
    Peng, Li
    Zhou, Yong
    Debbouche, Amar
    CHAOS SOLITONS & FRACTALS, 2019, 118 : 234 - 241
  • [25] Addressing capacity uncertainty in resource-constrained assignment problems
    Toktas, B
    Yen, JW
    Zabinsky, ZB
    COMPUTERS & OPERATIONS RESEARCH, 2006, 33 (03) : 724 - 745
  • [26] An ε-relaxation method for separable convex cost generalized network flow problems
    Paul Tseng
    Dimitri P. Bertsekas
    Mathematical Programming, 2000, 88 : 85 - 104
  • [27] Optimal capacity and flow assignment problem in a computer communication network
    Optymalizacja przeplywow i przepustowosci kanalow w sieciach teleinformatycznych
    1600, (34): : 1 - 2
  • [28] A concave link elimination (CLE) procedure and lower bound for concave topology, capacity and flow assignment network design problems
    Stacey, CHE
    Eyers, T
    Anido, GJ
    TELECOMMUNICATION SYSTEMS, 2000, 13 (2-4) : 351 - 372
  • [29] A Genetic Algorithm to Solve Capacity Assignment Problem in a Flow Network
    Hamed, Ahmed Y.
    Alkinani, Monagi H.
    Hassan, M. R.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2020, 64 (03): : 1579 - 1586
  • [30] Capacity and flow assignment of data networks by generalized Benders decomposition
    Philippe Mahey
    Abdelhamid Benchakroun
    Florence Boyer
    Journal of Global Optimization, 2001, 20 (2) : 169 - 189