Langevin Monte Carlo Rendering with Gradient-based Adaptation

被引:9
|
作者
Luan, Fujun [1 ]
Zhao, Shuang [2 ]
Bala, Kavita [1 ]
Gkioulekas, Ioannis [3 ]
机构
[1] Cornell Univ, Ithaca, NY 14853 USA
[2] Univ Calif Irvine, Irvine, CA 92717 USA
[3] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
来源
ACM TRANSACTIONS ON GRAPHICS | 2020年 / 39卷 / 04期
基金
美国国家科学基金会;
关键词
global illumination; photorealistic rendering; Langevin Monte Carlo;
D O I
10.1145/3386569.3392382
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We introduce a suite of Langevin Monte Carlo algorithms for efficient photorealistic rendering of scenes with complex light transport effects, such as caustics, interreflections, and occlusions. Our algorithms operate in primary sample space, and use the Metropolis-adjusted Langevin algorithm (MALA) to generate new samples. Drawing inspiration from state-of-the-art stochastic gradient descent procedures, we combine MALA with adaptive preconditioning and momentum schemes that re-use previously-computed first-order gradients, either in an online or in a cache-driven fashion. This combination allows MALA to adapt to the local geometry of the primary sample space, without the computational overhead associated with previous Hessian-based adaptation algorithms. We use the theory of controlled Markov chain Monte Carlo to ensure that these combinations remain ergodic, and are therefore suitable for unbiased Monte Carlo rendering. Through extensive experiments, we show that our algorithms, MALA with online and cache-driven adaptation, can successfully handle complex light transport in a large variety of scenes, leading to improved performance (on average more than 3x variance reduction at equal time, and 7x for motion blur) compared to state-of-the-art Markov chain Monte Carlo rendering algorithms.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Langevin Monte Carlo Filtering for Target Tracking
    Garcia, Fernando J. Iglesias
    Bocquel, Melanie
    Driessen, Hans
    2015 18TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2015, : 82 - 89
  • [32] Higher order Langevin Monte Carlo algorithm
    Sabanis, Sotirios
    Zhang, Ying
    ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (02): : 3805 - 3850
  • [33] Random Coordinate Underdamped Langevin Monte Carlo
    Ding, Zhiyan
    Li, Qin
    Lu, Jianfeng
    Wright, Stephen J.
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [34] COMPARISON OF LANGEVIN AND MONTE-CARLO DYNAMICS
    ETTELAIE, R
    MOORE, MA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (18): : 3505 - 3520
  • [35] Comparing Neural Style Transfer and Gradient-Based Algorithms in Brushstroke Rendering Tasks
    Karimov, Artur
    Kopets, Ekaterina
    Shpilevaya, Tatiana
    Katser, Evgenii
    Leonov, Sergey
    Butusov, Denis
    MATHEMATICS, 2023, 11 (10)
  • [36] Machine learning-accelerated gradient-based Markov chain Monte Carlo inversion applied to electrical resistivity tomography
    Aleardi, Mattia
    Vinciguerra, Alessandro
    Stucchi, Eusebio
    Hojat, Azadeh
    NEAR SURFACE GEOPHYSICS, 2022, 20 (04) : 440 - 461
  • [37] Analysis of Sample Correlations for Monte Carlo Rendering
    Singh, Gurprit
    Oztireli, Cengiz
    Ahmed, Abdalla G. M.
    Coeurjolly, David
    Subr, Kartic
    Deussen, Oliver
    Ostromoukhov, Victor
    Ramamoorthi, Ravi
    Jarosz, Wojciech
    COMPUTER GRAPHICS FORUM, 2019, 38 (02) : 473 - 491
  • [38] Monte Carlo Gradient Quantization
    Mordido, Goncalo
    Van Keirsbilck, Matthijs
    Keller, Alexander
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 3087 - 3095
  • [39] Efficient Monte Carlo rendering with realistic lenses
    Hanika, Johannes
    Dachsbacher, Carsten
    COMPUTER GRAPHICS FORUM, 2014, 33 (02) : 323 - 332
  • [40] Perceptual Error Optimization for Monte Carlo Rendering
    Chizhov, Vassillen
    Georgiev, Iliyan
    Myszkowski, Karol
    Singh, Gurprit
    ACM TRANSACTIONS ON GRAPHICS, 2022, 41 (03):