In situ polymerized superhydrophobic and superoleophilic nanofibrous membranes for gravity driven oil-water separation

被引:221
|
作者
Tang, Xiaomin [1 ,3 ]
Si, Yang [2 ,3 ]
Ge, Jianlong [1 ,3 ]
Ding, Bin [1 ,2 ,3 ]
Liu, Lifang [1 ,3 ]
Zheng, Gang [4 ]
Luo, Wenjing [4 ]
Yu, Jianyong [3 ]
机构
[1] Donghua Univ, Coll Text, Shanghai 201620, Peoples R China
[2] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modicat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
[3] Donghua Univ, Modern Textile Inst, Nanomat Res Ctr, Shanghai 200051, Peoples R China
[4] Fourth Mil Med Univ, Sch Publ Hlth, Dept Occupat & Environm Hlth, Xian 710032, Peoples R China
基金
中国国家自然科学基金;
关键词
HIERARCHICAL POROUS STRUCTURE; ELECTROSPUN FIBERS; POLYBENZOXAZINE; SURFACES; FABRICATION; NANOSTRUCTURES; TRANSITION;
D O I
10.1039/c3nr03937d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Creating an efficient, cost-effective method that can provide simple, practical and high-throughput separation of oil-water mixtures has proved extremely challenging. This work responds to these challenges by designing, fabricating and evaluating a novel fluorinated polybenzoxazine (F-PBZ) modified nanofibrous membrane optimized to achieve gravity driven oil-water separation. The membrane design is then realized by a facile combination of electrospun poly(m-phenylene isophthalamide) (PMIA) nanofibers and an in situ polymerized F-PBZ functional layer incorporating SiO2 nanoparticles (SiO2 NPs). By employing the F-PBZ/SiO2 NP modification, the pristine hydrophilic PMIA nanofibrous membranes are endowed with promising superhydrophobicity with a water contact angle of 161 degrees and superoleophilicity with an oil contact angle of 0 degrees. This new membrane shows high thermal stability (350 degrees C) and good repellency to hot water (80 degrees C), and achieves an excellent mechanical strength of 40.8 MPa. Furthermore, the as-prepared membranes exhibited fast and efficient separation of oil-water mixtures by a solely gravity driven process, which makes them good candidates for industrial oil-polluted water treatments and oil spill cleanup, and also provided new insights into the design and development of functional nanofibrous membranes through F-PBZ modification.
引用
收藏
页码:11657 / 11664
页数:8
相关论文
共 50 条
  • [21] Superhydrophobic-superoleophilic electrospun nanofibrous membrane modified by the chemical vapor deposition of dimethyl dichlorosilane for efficient oil-water separation
    Pour, Faride Zareei
    Sabzehmeidani, Mohammad Mehdi
    Karimi, Hajir
    Avargani, Vahid Madadi
    Ghaedi, Mehrorang
    JOURNAL OF APPLIED POLYMER SCIENCE, 2019, 136 (24)
  • [22] Oil-water separation using surface engineered superhydrophobic and superoleophilic membrane for the production of clean water
    Baig, Umair
    Gondal, M. A.
    Dastageer, M. A.
    JOURNAL OF WATER PROCESS ENGINEERING, 2022, 45
  • [23] Surface Modification to Fabricate Superhydrophobic and Superoleophilic Alumina Membranes for Oil/Water Separation
    Tang, Hongyan
    Hao, Liting
    Chen, Junchao
    Wang, Feng
    Zhang, Huapeng
    Guo, Yuhai
    ENERGY & FUELS, 2018, 32 (03) : 3627 - 3636
  • [24] Fabrication of superhydrophobic and superoleophilic polybenzoxazine-based cotton fabric for oil-water separation
    Li, Yun
    Yu, Qiao
    Yin, Xianze
    Xu, Jing
    Cai, Yajun
    Han, Lu
    Huang, Hao
    Zhou, Yingshan
    Tan, Yeqiang
    Wang, Luoxin
    Wang, Hua
    CELLULOSE, 2018, 25 (11) : 6691 - 6704
  • [25] Fabrication of bioinspired structured superhydrophobic and superoleophilic copper mesh for efficient oil-water separation
    Yan Song
    Yan Liu
    Bin Zhan
    Cigdem Kaya
    Thomas Stegmaier
    Zhiwu Han
    Luquan Ren
    Journal of Bionic Engineering, 2017, 14 : 497 - 505
  • [26] A reliable filter for oil-water separation: Bismuth coated superhydrophobic/superoleophilic iron mesh
    Yu, Tianlong
    Lu, Shixiang
    Xu, Wenguo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 769 : 576 - 587
  • [27] One-step fabrication of superhydrophobic and superoleophilic cigarette filters for oil-water separation
    Liu, Can
    Chen, Beibei
    Yang, Jin
    Li, Changsheng
    JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY, 2015, 29 (22) : 2399 - 2407
  • [28] Bioinspired structured superhydrophobic and superoleophilic stainless steel mesh for efficient oil-water separation
    Liu, Yan
    Zhang, Kaiteng
    Yao, Wenguang
    Liu, Jiaan
    Han, Zhiwu
    Ren, Luquan
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2016, 500 : 54 - 63
  • [29] Fabrication of Bioinspired Structured Superhydrophobic and Superoleophilic Copper Mesh for Efficient Oil-water Separation
    Song, Yan
    Liu, Yan
    Zhan, Bin
    Kaya, Cigdem
    Stegmaier, Thomas
    Han, Zhiwu
    Ren, Luquan
    JOURNAL OF BIONIC ENGINEERING, 2017, 14 (03) : 497 - 505
  • [30] Facile preparation of superhydrophobic/superoleophilic diatomite porous ceramics for efficient oil-water separation
    Li, Xiaojian
    Wu, Wenhao
    Han, Lei
    Li, Zhi
    Wang, Honghong
    Dong, Longhao
    Jia, Quanli
    Huang, Zhong
    Zhang, Haijun
    Zhang, Shaowei
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2022, 130 (11) : 867 - 874