Sparse representation based classification scheme for human activity recognition using smartphones

被引:16
|
作者
Jansi, R. [1 ]
Amutha, R. [1 ]
机构
[1] SSN Coll Engn, Dept Elect & Commun Engn, Chennai, Tamil Nadu, India
关键词
Activity recognition; Classification; Sensors; Smartphone; Sparse; ACCELEROMETER; MULTISENSOR; CONTEXT; FACE;
D O I
10.1007/s11042-018-6662-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The availability of built-in sensors in mobile devices have paved a way for researchers to accurately determine human activities through these sensors. In this paper, we present a novel action recognition system based on sparse representation wherein, eight different human activities were classified. Our proposed classifier employs data of accelerometer, gyroscope, magnetometer and orientation sensor equipped in smartphones for recognizing human activities. Time-domain and frequency-domain features are derived from the acquired sensor data. We have introduced a novel algorithm for fusing the data from the four sensors using a sparse representation based technique that aid in achieving the best classification performance. In the proposed algorithm, if the majority of the sensors indicate a particular class as the output, then that specific class is assigned as the actual test class. However, if there is a disagreement between the classified output of different sensors, then a novel weighted fusion scheme is introduced to fuse the scores and the residue produced by different sensors. The weight used in fusion is chosen to be the standard deviation of the score vector. Thus, the features of excellent sensors are made to bestow more on to the result of action recognition. Finally, the action label is recognized based on an activity metric that maximizes the score while minimizing the residue. The performance analysis of the proposed system is performed using leave-one-subject-out approach. Performance evaluation metrics like recall, precision, specificity, F-score and accuracy are utilized in projecting the performance of the proposed system. It was shown that the proposed system attained a high overall accuracy of about 97.13%.
引用
收藏
页码:11027 / 11045
页数:19
相关论文
共 50 条
  • [31] Deep Learning Based Face Recognition with Sparse Representation Classification
    Cheng, Eric-Juwei
    Prasad, Mukesh
    Puthal, Deepak
    Sharma, Nabin
    Prasad, Om Kumar
    Chin, Po-Hao
    Lin, Chin-Teng
    Blumenstein, Michael
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT III, 2017, 10636 : 665 - 674
  • [32] Face Recognition: A Sparse Representation-based Classification Using Independent Component Analysis
    Karimi, Mirhossein Mousavi
    Soltanian-Zadeh, Hamid
    2012 SIXTH INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS (IST), 2012, : 1170 - 1174
  • [33] Human Activity Recognition Using Smartphones With WiFi Signals
    Lin, Guiping
    Jiang, Weiwei
    Xu, Sicong
    Zhou, Xiaobo
    Guo, Xing
    Zhu, Yujun
    He, Xin
    IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2023, 53 (01) : 142 - 153
  • [34] Robust Human Activity Recognition using smartwatches and smartphones
    San-Segundo, Ruben
    Blunck, Henrik
    Moreno-Pimentel, Jose
    Stisen, Allan
    Gil-Martin, Manuel
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2018, 72 : 190 - 202
  • [35] Human Activity Classification in Smartphones using Shape Descriptors
    Jain, Ankita
    Kanhangad, Vivek
    2018 TWENTY FOURTH NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2018,
  • [36] Human Activity Detection using Sparse Representation
    Killedar, Dipti
    Sasi, Sreela
    2014 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2014,
  • [37] Human Activity Recognition Based on Acceleration Data From Smartphones Using HMMs
    Iloga, Sylvain
    Bordat, Alexandre
    Le Kernec, Julien
    Romain, Olivier
    IEEE ACCESS, 2021, 9 : 139336 - 139351
  • [38] Multimodal Sparse Representation-Based Classification Scheme for RF Fingerprinting
    Yang, Kiwon
    Kang, Jusung
    Jang, Jehyuk
    Lee, Heung-No
    IEEE COMMUNICATIONS LETTERS, 2019, 23 (05) : 867 - 870
  • [39] Sparse Representation Based Face Recognition Using VGGFace
    Madarkar, Jitendra
    Sharma, Poonam
    MACHINE LEARNING AND BIG DATA ANALYTICS (PROCEEDINGS OF INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND BIG DATA ANALYTICS (ICMLBDA) 2021), 2022, 256 : 280 - 288
  • [40] Competitive Sparse Representation Classification for Face Recognition
    Liu, Ying
    Li, Cong
    Mi, Jian-Xun
    Li, Chao
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2015, 6 (08) : 1 - 7