Spectrograph is an optical device that is used to disperse photons of different energies E into distinct directions and space locations, and to take a snapshot of the whole spectrum of photon energies with a spatially sensitive photon detector. Substantial advantage of a spectrograph over an ordinary spectral analyzer, is its ability to deal with many photon energies simultaneously, thus reducing exposure time per spectrum considerably. To realize a spectrograph, dispersing elements with large angular dispersion rate are required. In visible light optics this is easily achieved with diffraction gratings. In hard x-ray regime this is a problem. Here we show, on the example of CDW x-ray optics [1-3], that multi-crystal arrangements may feature cumulative angular dispersion rates more than an order of magnitude larger than those attainable in single Bragg reflections. This makes, first, hard x-ray spectrographs feasible, and, secondly, a resolving power beyond E/Delta E greater than or similar to 10(8) achievable.