Evaluation of the imaging properties of Microwave Imaging Reflectometry

被引:2
|
作者
Hong, I. [1 ]
Lee, W. [1 ]
Leem, J. [1 ]
Nam, Y. [1 ]
Kim, M. [1 ]
Yun, G. S. [1 ]
Park, H. K. [1 ]
Domier, C. W. [2 ]
Luhmann, N. C., Jr. [2 ]
机构
[1] POSTECH, Pohang 790784, Gyeongbuk, South Korea
[2] Univ Calif Davis, Davis, CA 95616 USA
来源
关键词
Plasma diagnostics - interferometry; spectroscopy and imaging; Nuclear instruments and methods for hot plasma diagnostics; FLUCTUATION MEASUREMENTS; SYSTEM;
D O I
10.1088/1748-0221/7/01/C01077
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Microwave Imaging Reflectometry (MIR) has been developed for unambiguous measurement of electron density fluctuations in fusion plasmas. The loss of phase information limiting the use of conventional reflectometry can be minimized by a large aperture imaging optics and an array of detectors in the MIR embodiment. The evaluation of the optical system is critical for precise reconstruction of the fluctuations. The optical systems of the prototype TEXTOR MIR [2] and newly-designed KSTARMIR [5] systems have been tested with a corrugated target simulating density fluctuations at the cut-off surface. The reconstructed phase from the MIR system has been compared to the directly measured phase of corrugations taking into account the rotational speed of the target. The effects of optical aberrations and interference between lenses on the phase reconstruction have been investigated by the 2D amplitude measurement of the reflected waves and the diffraction-based optical simulations. (CODE V) A preliminary design of the KSTAR MIR optics has been suggested which can minimize the aberration and interference effects.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Resonance Microwave Reflectometry for High-Resolution Surface Imaging
    Malyuskin, Oleksandr
    Fusco, Vincent
    2015 1st URSI Atlantic Radio Science Conference (URSI AT-RASC), 2015,
  • [22] Optics System Design of Microwave Imaging Reflectometry for the EAST Tokamak
    Zhu Yilun
    Zhao Zhenling
    Tong Li
    Chen Dongxu
    Xie Jinlin
    Liu Wandong
    PLASMA SCIENCE & TECHNOLOGY, 2016, 18 (04) : 449 - 452
  • [23] Low-noise heterodyne receiver for electron cyclotron emission imaging and microwave imaging reflectometry
    Tobias, B.
    Domier, C. W.
    Luhmann, N. C., Jr.
    Luo, C.
    Mamidanna, M.
    Phan, T.
    Pham, A. -V.
    Wang, Y.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (11):
  • [24] SCATTERER PROPERTIES IN MICROWAVE IMAGING
    OLIVER, CJ
    MICROWAVES & RF, 1983, 22 (08) : 149 - 149
  • [25] Imaging reflectometry in situ
    Urbanek, Michal
    Spousta, Jiri
    Behounek, Tomas
    Sikola, Tomas
    APPLIED OPTICS, 2007, 46 (25) : 6309 - 6313
  • [26] Development of 3D microwave imaging reflectometry in LHD (invited)
    Nagayama, Y.
    Kuwahara, D.
    Yoshinaga, T.
    Hamada, Y.
    Kogi, Y.
    Mase, A.
    Tsuchiya, H.
    Tsuji-Iio, S.
    Yamaguchi, S.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (10):
  • [27] Quasi-optical system for 8 mm microwave imaging reflectometry
    Wang, Zhao
    Meng, Lin
    Wang, Bin
    Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2013, 25 (05): : 1247 - 1250
  • [28] Microwave Imaging Reflectometry for the study of Edge Harmonic Oscillations on DIII-D
    Ren, X.
    Chen, M.
    Chen, X.
    Domier, C. W.
    Ferraro, N. M.
    Kramer, G. J.
    Luhmann, N. C., Jr.
    Muscatello, C. M.
    Nazikian, R.
    Shi, L.
    Tobias, B. J.
    Valeo, E.
    JOURNAL OF INSTRUMENTATION, 2015, 10
  • [29] Investigation of turbulence in reversed field pinch plasma by using microwave imaging reflectometry
    Shi, Z. B.
    Nagayama, Y.
    Yamaguchi, S.
    Hamada, Y.
    Hirano, Y.
    Kiyama, S.
    Koguchi, H.
    Michael, C. A.
    Sakakita, H.
    Yambe, K.
    PHYSICS OF PLASMAS, 2011, 18 (10)
  • [30] Polarization imaging reflectometry in the wild
    Riviere, Jeremy
    Reshetouski, Ilya
    Filipi, Luka
    Ghosh, Abhijeet
    ACM TRANSACTIONS ON GRAPHICS, 2017, 36 (06):