Conserved Polar Residues in Transmembrane Domains V, VI, and VII of Free Fatty Acid Receptor 2 and Free Fatty Acid Receptor 3 Are Required for the Binding and Function of Short Chain Fatty Acids

被引:92
|
作者
Stoddart, Leigh A. [1 ]
Smith, Nicola J. [1 ]
Jenkins, Laura [1 ]
Brown, Andrew J. [2 ]
Milligan, Graeme [1 ]
机构
[1] Univ Glasgow, Fac Biomed & Life Sci, Mol Pharmacol Grp, Glasgow G12 8QQ, Lanark, Scotland
[2] GlaxoSmithKline, Dept Screening & Compound Profiling, Harlow CM19 5AW, Essex, England
基金
英国生物技术与生命科学研究理事会;
关键词
D O I
10.1074/jbc.M805601200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
FFA2 and FFA3 are closely related G protein-coupled receptors that bind and respond to short chain fatty acids. (FFA2 and FFA3 are the provisional International Union of Pharmacology designations for the receptors previously called GPR43 and GPR41, respectively.) Sequence comparisons between these two receptors and alignments with the related G protein-coupled receptor FFA1, linked to homology modeling based on the atomic level structure of bovine rhodopsin, indicated the potential for polar residues within the transmembrane helix bundle to play important roles in ligand recognition and function. In both FFA2 and FFA3, mutation of either an arginine at the top of transmembrane domain V or a second arginine at the top of transmembrane domain VII eliminated the function of a range of short chain fatty acids. Mutation of a histidine in transmembrane domain VI, predicted to be in proximity to both the arginine residues, also eliminated function in many but not all assay formats. By contrast, mutation of a histidine in transmembrane domain IV, predicted to be lower in the binding pocket, modulated function in some assays of FFA3 function but had limited effects on the function of acetate and propionate at FFA2. Interestingly, wild type FFA3 responded to caproate, whereas FFA2 did not. Mutation of the transmembrane domain IV histidine eliminated responses of FFA3 to caproate but resulted in a gain of function of FFA2 to this six-carbon fatty acid. These data demonstrate the importance of positively charged residues in the recognition and/or function of short chain fatty acids in both FFA2 and FFA3. The development of small molecule ligands that interact selectively with these receptors will allow further details of the binding pockets to be elucidated.
引用
收藏
页码:32913 / 32924
页数:12
相关论文
共 50 条
  • [31] Free fatty acids and protein kinase C activation induce GPR120 (free fatty acid receptor 4) phosphorylation
    Sanchez-Reyes, Omar B.
    Teresa Romero-Avila, M.
    Castillo-Badillo, Jean A.
    Takei, Yoshinori
    Hirasawa, Akira
    Tsujimoto, Gozoh
    Villalobos-Molina, Rafael
    Adolfo Garcia-Sainz, J.
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2014, 723 : 368 - 374
  • [32] The Short-Chain Fatty Acid Propionate Inhibits Adipogenic Differentiation of Human Chorion-Derived Mesenchymal Stem Cells Through the Free Fatty Acid Receptor 2
    Ivan, Judit
    Major, Evelin
    Sipos, Adrienn
    Kovacs, Katalin
    Horvath, Daniel
    Tamas, Istvan
    Bay, Peter
    Dombradi, Viktor
    Lontay, Beata
    STEM CELLS AND DEVELOPMENT, 2017, 26 (23) : 1724 - 1733
  • [33] Physiological function of short-chain fatty acid receptor under ketogenic condition
    Kasubuchi, Mayu
    Hasegawa, Sae
    Ichimura, Atsuhiko
    Kimura, Ikuo
    FASEB JOURNAL, 2016, 30
  • [34] Peroxisome proliferator activator receptor alpha (PPARα,) activation using free fatty acid library; fatty acids compared
    Rebhun, J. F.
    Velliquette, R. A.
    Roloff, S. J.
    Glynn, K. M.
    Rana, J.
    Gellenbeck, K. W.
    Scholten, J. D.
    PLANTA MEDICA, 2015, 81 (11) : 884 - 884
  • [35] Regulation of Neointimal Hyperplasia by the Free Fatty Acid Receptor FFAR3
    Nooromid, Michael J.
    Xiong, Liqun
    Chen, Edmund B.
    Shapiro, Katherine E.
    Wun, Kelly
    Jiang, Qun
    Eskandari, Owen M.
    Ho, Karen J.
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2019, 39
  • [36] Complex Pharmacology of Novel Allosteric Free Fatty Acid 3 Receptor Ligands
    Hudson, Brian D.
    Christiansen, Elisabeth
    Murdoch, Hannah
    Jenkins, Laura
    Hansen, Anders Hojgaard
    Madsen, Ole
    Ulven, Trond
    Milligan, Graeme
    MOLECULAR PHARMACOLOGY, 2014, 86 (02) : 200 - 210
  • [37] Identification of free fatty acid receptor 2 agonists using virtual screening
    Fells, James, I
    Ai, Xi
    Weinglass, Adam
    Feng, Wen
    Lei, Ying
    Finley, Michael
    Hoveyda, Hamid R.
    Fraser, Graeme L.
    Machacek, Michelle
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2020, 30 (21)
  • [38] Free Fatty Acid Receptor Agonists for the Management of Type 2 Diabetes Mellitus
    Kaur, Gagandeep
    Rani, Lata
    Sood, Parul
    Mittal, Neeraj
    Devi, Sushma
    PHARMACEUTICAL CHEMISTRY JOURNAL, 2024, 58 (09) : 1362 - 1369
  • [39] Pathophysiological regulation of lung function by the free fatty acid receptor FFA4
    Prihandoko, Rudi
    Kaur, Davinder
    Wiegman, Coen H.
    Alvarez-Curto, Elisa
    Donovan, Chantal
    Chachi, Latifa
    Ulven, Trond
    Tyas, Martha R.
    Euston, Eloise
    Dong, Zhaoyang
    Alharbi, Abdulrahman Ghali M.
    Kim, Richard Y.
    Lowe, Jack G.
    Hansbro, Philip M.
    Chung, Kian Fan
    Brightling, Christopher E.
    Milligan, Graeme
    Tobin, Andrew B.
    SCIENCE TRANSLATIONAL MEDICINE, 2020, 12 (557)
  • [40] Ketogenic diet alleviates renal fibrosis in mice by enhancing fatty acid oxidation through the free fatty acid receptor 3 pathway
    Qiu, Yang
    Hu, Xiaofan
    Xu, Cong
    Lu, Chenqi
    Cao, Rui
    Xie, Yanan
    Yang, Jun
    FRONTIERS IN NUTRITION, 2023, 10