FPGA-based Low-power Speech Recognition with Recurrent Neural Networks

被引:38
|
作者
Lee, Minjae [1 ]
Hwang, Kyuyeon [1 ]
Park, Jinhwan [1 ]
Choi, Sungwook [1 ]
Shin, Sungho [1 ]
Sung, Wonyong [1 ]
机构
[1] Seoul Natl Univ, Dept Elect & Comp Engn, 1 Gwanak Ro, Seoul 08826, South Korea
关键词
D O I
10.1109/SiPS.2016.48
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a neural network based real-time speech recognition (SR) system is developed using an FPGA for very low-power operation. The implemented system employs two recurrent neural networks (RNNs); one is a speech-to-character RNN for acoustic modeling (AM) and the other is for character-level language modeling (LM). The system also employs a statistical word-level LM to improve the recognition accuracy. The results of the AM, the character-level LM, and the word-level LM are combined using a fairly simple N-best search algorithm instead of the hidden Markov model (HMM) based network. The RNNs are implemented using massively parallel processing elements (PEs) for low latency and high throughput. The weights are quantized to 6 bits to store all of them in the on-chip memory of an FPGA. The proposed algorithm is implemented on a Xilinx XC7Z045, and the system can operate much faster than real-time.
引用
收藏
页码:230 / 235
页数:6
相关论文
共 50 条
  • [31] A low-power VLSI design of a HMM based speech recognition system
    Yoshizawa, S
    Miyanaga, Y
    Wada, N
    2002 45TH MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL II, CONFERENCE PROCEEDINGS, 2002, : 489 - 492
  • [32] Optimisation of FPGA-Based Designs for Convolutional Neural Networks
    Bonifus, P. L.
    Thomas, Ann Mary
    Antony, Jobin K.
    SMART SENSORS MEASUREMENT AND INSTRUMENTATION, CISCON 2021, 2023, 957 : 209 - 221
  • [33] FPGA-Based Acceleration for Bayesian Convolutional Neural Networks
    Fan, Hongxiang
    Ferianc, Martin
    Que, Zhiqiang
    Liu, Shuanglong
    Niu, Xinyu
    Rodrigues, Miguel R. D.
    Luk, Wayne
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2022, 41 (12) : 5343 - 5356
  • [34] An FPGA-Based Processor for Training Convolutional Neural Networks
    Liu, Zhiqiang
    Dou, Yong
    Jiang, Jingfei
    Wang, Qiang
    Chow, Paul
    2017 INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE TECHNOLOGY (ICFPT), 2017, : 207 - 210
  • [35] Convolutional Neural Networks using FPGA-based Pipelining
    Ali G.A.
    Ali A.H.
    Iraqi Journal for Computer Science and Mathematics, 2023, 4 (02): : 215 - 223
  • [36] Implementation of FPGA-based Accelerator for Deep Neural Networks
    Tsai, Tsung-Han
    Ho, Yuan-Chen
    Sheu, Ming-Hwa
    2019 IEEE 22ND INTERNATIONAL SYMPOSIUM ON DESIGN AND DIAGNOSTICS OF ELECTRONIC CIRCUITS & SYSTEMS (DDECS), 2019,
  • [37] An Efficient FPGA-Based Architecture for Convolutional Neural Networks
    Hwang, Wen-Jyi
    Jhang, Yun-Jie
    Tai, Tsung-Ming
    2017 40TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2017, : 582 - 588
  • [38] A survey of FPGA-based accelerators for convolutional neural networks
    Sparsh Mittal
    Neural Computing and Applications, 2020, 32 : 1109 - 1139
  • [39] A survey of FPGA-based accelerators for convolutional neural networks
    Mittal, Sparsh
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (04): : 1109 - 1139
  • [40] RECURRENT DEEP NEURAL NETWORKS FOR ROBUST SPEECH RECOGNITION
    Weng, Chao
    Yu, Dong
    Watanabe, Shinji
    Juang, Biing-Hwang
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,