Closed-form expression for the average weight of signed-digit representations

被引:6
|
作者
Wu, HP [1 ]
Hasan, MA
机构
[1] IIT, Dept Elect & Comp Engn, Chicago, IL 60616 USA
[2] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
radix-r number system; minimal weight signed-digit representation; canonical signed-digit representation;
D O I
10.1109/12.795126
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In radix-r number system, the minimal weight signed-digit (SD) representation has minimal number of nonzero signed-digits which belong to the set {+/-1,+/-2,...,+/-(r-1)}. In this article, we derive closed form expressions for the average number of nonzero digits in the minimal weight SD representation and for the average length of the canonical SD representation, a special case of the minimal weight SD form, of a positive integer whose radix-r form is of length n, n greater than or equal to 1.
引用
收藏
页码:848 / 851
页数:4
相关论文
共 50 条
  • [31] Detrending moving average algorithm: A closed-form approximation of the scaling law
    Arianos, Sergio
    Carbone, Anna
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 382 (01) : 9 - 15
  • [32] A Closed-Form Execution Strategy to Target Volume Weighted Average Price
    Cartea, Alvaro
    Jaimungal, Sebastian
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2016, 7 (01): : 760 - 785
  • [33] Closed-form representations of iterated Darboux transformations for the massless Dirac equation
    Schulze-Halberg, Axel
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2021, 36 (8-9):
  • [34] Closed-form representations of field components of fluorescent emitters in layered media
    Dogan, Mehmet
    Aksun, M. Irsadi
    Swan, Anna K.
    Goldberg, Bennett B.
    Unlu, M. Selim
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2009, 26 (06) : 1458 - 1466
  • [35] Closed-form network representations of frequency-dependent RLGC parameters
    Engin, AE
    Mathis, W
    John, W
    Sommer, G
    Reichl, H
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2005, 33 (06) : 463 - 485
  • [36] Closed-Form Expression of the Response Time of an Open Channel
    Munier, S.
    Belaud, G.
    Litrico, X.
    JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 2010, 136 (10) : 677 - 684
  • [37] Closed-form expression for Hankel determinants of the Narayana polynomials
    Marko D. Petković
    Paul Barry
    Predrag Rajković
    Czechoslovak Mathematical Journal, 2012, 62 : 39 - 57
  • [38] A closed-form expression for the total degradation in OFDM systems
    Rosati, Stefano
    Candreva, Enzo Alberto
    Vanelli-Coralli, Alessandro
    Corazza, Giovanni E.
    INTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS AND NETWORKING, 2015, 33 (06) : 543 - 555
  • [39] CLOSED-FORM EXPRESSION FOR THE INVERSE OF A CLASS OF TRIDIAGONAL MATRICES
    Hovda, Sigve
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2016, 6 (04): : 437 - 445
  • [40] Closed-form expression for Hankel determinants of the Narayana polynomials
    Petkovic, Marko D.
    Barry, Paul
    Rajkovic, Predrag
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2012, 62 (01) : 39 - 57