Energy decay for a viscoelastic Kirchhoff plate equation with a delay term

被引:3
|
作者
Feng, Baowei [1 ]
Li, Haiyan [2 ]
机构
[1] Southwestern Univ Finance & Econ, Fac Econ Math, Chengdu 611130, Peoples R China
[2] Beifang Univ Nationalities, Coll Math & Informat Sci, Yinchuan 750021, Peoples R China
来源
关键词
general decay; Kirchhoff plate; delay feedbacks; WAVE-EQUATION; EXPONENTIAL DECAY; GLOBAL EXISTENCE; GENERAL DECAY; EXTENSIBLE BEAM; STABILIZATION; BOUNDARY; STABILITY; FEEDBACK;
D O I
10.1186/s13661-016-0682-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A nonlinear viscoelastic Kirchhoff plate equation with a time delay term in the internal feedback is considered. Under suitable assumptions, we establish the general rates of energy decay of the initial and boundary value problem by using the energy perturbation method.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Global Existence and Decay of Solutions for a Class of Viscoelastic Kirchhoff Equation
    Mezouar, Nadia
    Boulaaras, Salah
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (01) : 725 - 755
  • [22] Global Existence and Decay of Solutions for a Class of Viscoelastic Kirchhoff Equation
    Nadia Mezouar
    Salah Boulaaras
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 725 - 755
  • [23] Asymptotic stability of a quasi-linear viscoelastic Kirchhoff plate equation with logarithmic source and time delay
    Hajjej, Zayd
    Park, Sun-Hye
    AIMS MATHEMATICS, 2023, 8 (10): : 24087 - 24115
  • [24] General Decay for a Viscoelastic Wave Equation with Density and Time Delay Term in Rn
    Feng, Baowei
    TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (01): : 205 - 223
  • [25] Exponential Energy Decay of Solutions for a Transmission Problem With Viscoelastic Term and Delay
    Wang, Danhua
    Li, Gang
    Zhu, Biqing
    MATHEMATICS, 2016, 4 (02)
  • [26] ENERGY DECAY IN THERMOELASTICITY TYPE III WITH VISCOELASTIC DAMPING AND DELAY TERM
    Apalara, Tijani A.
    Messaoudi, Salim A.
    Mustafa, Muhammad I.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
  • [27] GENERAL DECAY RATE ESTIMATE FOR THE ENERGY OF A WEAK VISCOELASTIC EQUATION WITH AN INTERNAL TIME-VARYING DELAY TERM
    Liu, Wenjun
    TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (06): : 2101 - 2115
  • [28] Existence and energy decay of solutions for the Euler-Bernoulli viscoelastic equation with a delay
    Yang, Zhifeng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (03): : 727 - 745
  • [29] Energy Decay of the Solution for a Weak Viscoelastic Equation with a Time-Varying Delay
    Liu, Gongwei
    Diao, Lin
    ACTA APPLICANDAE MATHEMATICAE, 2018, 155 (01) : 9 - 19
  • [30] Energy Decay of the Solution for a Weak Viscoelastic Equation with a Time-Varying Delay
    Gongwei Liu
    Lin Diao
    Acta Applicandae Mathematicae, 2018, 155 : 9 - 19