Collaborative IPTV Content Recommendation Method Using an Implicit Attribute Preference

被引:0
|
作者
Kwon, Hyeong-Joon [1 ]
Hong, Kwang-Seok [1 ]
机构
[1] Sungkyunkwan Univ, Sch Informat & Commun Engn, Seoul, South Korea
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a method using an implicit item attribute rating for a user. The method improves preference rating prediction accuracy of collaborative filtering-based IPTV content recommender systems by ameliorating the data sparsity problem. We confirmed that the method is robust in regards to the data sparsity problem found in collaborative filtering through various experiments.
引用
收藏
页码:570 / 571
页数:2
相关论文
共 50 条
  • [31] Designing a tourism recommendation system using a hybrid method (Collaborative Filtering and Content-Based Filtering)
    Praditya, Ni Wayan Priscila Yuni
    Permanasari, Adhistya Erna
    Hidayah, Indriana
    2021 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION, NETWORKS AND SATELLITE (COMNETSAT 2021), 2021, : 298 - 305
  • [32] Method of multiple attribute decision with dynamic attribute preference
    Coll. of Economics and Business Administration, Chongqing Univ., Chongqing 400044, China
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2007, 29 (04): : 555 - 558
  • [33] DCAR: Deep Collaborative Autoencoder for Recommendation with Implicit Feedback
    Wang, Jiong
    Gao, Neng
    Peng, Jia
    Mo, Jingjie
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: TEXT AND TIME SERIES, PT IV, 2019, 11730 : 172 - 184
  • [34] Matrix decomposition recommendation model incorporating item attribute preference
    Han L.
    Chen L.
    Shi X.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2022, 49 (03): : 147 - 159
  • [35] A Devised Framework for Content Recommendation System Using Collaborative Log Mining
    Varnagar, Chintan R.
    Madhak, Nirali N.
    Kodinariya, Trupti M.
    Agrawal, Rashmi S.
    2013 IEEE INTERNATIONAL MULTI CONFERENCE ON AUTOMATION, COMPUTING, COMMUNICATION, CONTROL AND COMPRESSED SENSING (IMAC4S), 2013, : 532 - 539
  • [36] User preference mining through hybrid collaborative filtering and content-based filtering in recommendation system
    Jung, KY
    Lee, JH
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2004, E87D (12): : 2781 - 2790
  • [37] Personalized Preference Collaborative Filtering: Job Recommendation for Graduates
    Zhou, Qing
    Liao, Fenglu
    Ge, Liang
    Sun, Jianglin
    2019 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI 2019), 2019, : 1055 - 1062
  • [38] Preference transfer model in collaborative filtering for implicit data
    Bin JU
    Yun-tao QIAN
    Min-chao YE
    FrontiersofInformationTechnology&ElectronicEngineering, 2016, 17 (06) : 489 - 500
  • [39] Preference transfer model in collaborative filtering for implicit data
    Ju, Bin
    Qian, Yun-tao
    Ye, Min-Chao
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2016, 17 (06) : 489 - 500
  • [40] Preference transfer model in collaborative filtering for implicit data
    Bin Ju
    Yun-tao Qian
    Min-chao Ye
    Frontiers of Information Technology & Electronic Engineering, 2016, 17 : 489 - 500