ICRF system efficiency

被引:2
|
作者
Faugel, H. [1 ]
Bobkov, V [1 ]
Fuenfgelder, H. [1 ]
Noterdaeme, J. M. [1 ,2 ]
Messiaen, A. [3 ]
Van Eester, D. [3 ]
机构
[1] EURATOM, Max Planck Inst Plasmaphys, Garching, Germany
[2] Univ Ghent, Appl Phys Dept, Ghent, Belgium
[3] LPP ERM KMS, Brussels, Belgium
关键词
heating; current drive; ICRF; ICRH; efficiency;
D O I
10.1016/j.fusengdes.2020.111641
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The efficiency of heating and current drive systems is one of the key parameters for a successful operation of fusion demonstration power plants like DEMO. In an earlier review article, overall plug efficiencies of H & CD systems were estimated at 20 - 30 % Bradley a al.. We present here a detailed breakdown based where possible on experimental data for the overall efficiency (plug to power in plasma) of ICRF (ion cyclotron range of frequencies) systems: 1) the technical efficiencies (RF generator, transmission lines, losses in antenna); 2) the interface efficiency (hardware/ plasma) and 3) heating efficiency (absorption in plasma). This leads currently to an overall efficiency for heating in the range 40% to 55%. Future improvements can lead to an overall efficiency of up to 69 %. In a second step we address the current drive efficiency (in terms of kA/MW absorbed).
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Development of the liquid matching components for the KSTAR ICRF system
    Yoon, J. S.
    Bae, Y. D.
    Kwak, J. K.
    Wang, S. J.
    Hong, B. G.
    Park, D. C.
    Kumazawa, R.
    Saito, K.
    FUSION ENGINEERING AND DESIGN, 2007, 82 (5-14) : 771 - 774
  • [22] Improved Operating Space of the ICRF System in ASDEX Upgrade
    Bobkov, V
    Bilato, R.
    Faugel, H.
    Funfgelder, H.
    Kazakov, Ye O.
    Mantsinen, M.
    Noterdaeme, J-M
    Ochoukov, R.
    Puetterich, Th
    Suarez Lopez, G.
    Tierens, W.
    Zhang, W.
    23RD TOPICAL CONFERENCE ON RADIOFREQUENCY POWER IN PLASMAS, 2020, 2254
  • [23] Resonant loop system for the KSTAR ICRF current drive
    Wang, S. J.
    Kim, S. H.
    Kim, S. K.
    Kim, H. J.
    FUSION ENGINEERING AND DESIGN, 2013, 88 (03) : 129 - 135
  • [24] Fault detection system for ICRF transmission line in LHD
    Saito, K.
    Seki, T.
    Kasahara, H.
    Seki, R.
    Kamio, S.
    Nomura, G.
    Mutoh, T.
    FUSION ENGINEERING AND DESIGN, 2017, 123 : 444 - 447
  • [25] TECHNOLOGY OF THE UPGRADED JET ICRF HEATING SYSTEM.
    Wade, T.J.
    Kaye, A.S.
    Jacquinot, J.
    Fusion Technology, 1986, 10 (3 pt 2B): : 1398 - 1403
  • [26] Fifty Years of Progress in ICRF, From First Experiments on the Model C Stellarator to the Design of an ICRF System for DEMO
    Noterdaeme, J-M
    23RD TOPICAL CONFERENCE ON RADIOFREQUENCY POWER IN PLASMAS, 2020, 2254
  • [27] Upgrading the ICRF data acquisition system at ASDEX Upgrade
    Faugel, H.
    Bobkov, V.
    Eixenberger, H.
    Podoba, Y.
    Stepanov, I.
    RADIOFREQUENCY POWER IN PLASMAS, 2014, 1580 : 378 - 381
  • [28] COUPLING EFFICIENCY TO ICRF TOROIDAL EIGENMODES AND TRANSMISSION BETWEEN 2 IDENTICAL ANTENNAS
    GREENE, GJ
    GOULD, RW
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (08): : 1062 - 1062
  • [29] ICRF MODE CONVERSION EFFICIENCY IN A TWO-ION COMPONENT PLASMA OF A TOKAMAK
    Grekov, D. L.
    Kasilov, S. V.
    Tretjak, K. K.
    PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2011, (01): : 197 - 199
  • [30] Correlation between excitation of Alfven modes and degradation of ICRF heating efficiency in TFTR
    Bernabei, S
    Chang, Z
    Darrow, D
    Fredrickson, ED
    Fu, GY
    Hoang, GT
    Hosea, JC
    Majeski, R
    Phillips, CK
    Rogers, JH
    Schilling, G
    Wilson, JR
    RADIO FREQUENCY POWER IN PLASMAS, 1997, (403): : 69 - 72