Instability of streaks in pipe flow of shear-thinning fluids

被引:1
|
作者
Carranza, S. N. Lopez [1 ]
Jenny, M. [1 ]
Nouar, C. [1 ]
机构
[1] CNRS, LEMTA, UMR 7563, F-54518 Vandoeuvre Les Nancy, France
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 02期
关键词
EXACT COHERENT STRUCTURES; YIELD-STRESS FLUID; ELASTIC TURBULENCE; STREAMWISE STREAKS; WALL TURBULENCE; STABILITY; TRANSITION; DISTURBANCES; THRESHOLDS;
D O I
10.1103/PhysRevE.88.023005
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This study is motivated by recent experimental results dealing with the transition to turbulence in a pipe flow of shear-thinning fluids, where a streaky flow with an azimuthal wave number n = 1 is observed in the transitional regime. Here, a linear stability analysis of pipe flow of shear-thinning fluids modulated azimuthally by finite amplitude streaks is performed. The shear-thinning behavior of the fluid is described by the Carreau model. The streaky base flows considered are obtained from two-dimensional direct numerical simulation using finite amplitude longitudinal rolls as the initial condition and by extracting the velocity field at time t(max), where the amplitude of the streaks reaches its maximum, denoted by A(max). It is found that the amplitude A(max) increases with increasing Reynolds number as well as with increasing amplitude epsilon(0) of the initial longitudinal rolls. For sufficiently large streaks amplitude, streamwise velocity profiles develop inflection points, leading to instabilities. Depending on the threshold amplitude A(c), two different modes may trigger the instability of the streaks. If A(c) exceeds approximately 41.5% of the centerline velocity, the instability mode is located near the axis of the pipe, i.e., it is a "center mode." For weaker amplitude A(c), the instability mode is located near the pipe wall, in the region of highest wall normal shear, i.e., it is a "wall mode." The threshold amplitude A(c) decreases with increasing shear-thinning effects. The energy equation analysis indicates that (i) wall modes are driven mainly by the work of the Reynolds stress against the wall normal shear and (ii) for center modes, the contribution of the normal wall shear remains dominant; however, it is noted that the contribution of the Reynolds stress against the azimuthal shear increases with increasing shear-thinning effects.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Secondary instabilities in Taylor-Couette flow of shear-thinning fluids
    Topayev, S.
    Nouar, C.
    Dusek, J.
    JOURNAL OF FLUID MECHANICS, 2022, 933
  • [42] Flow Bifurcations of Shear-Thinning Fluids in a Channel with Sudden Contraction and Expansion
    Patlazhan, S. A.
    Roshchin, D. E.
    Kravchenko, I. V.
    Berlin, A. A.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2019, 13 (05) : 842 - 848
  • [43] Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
    Yang, Gang
    Zheng, Ting
    Cheng, Qihao
    Zhang, Huichen
    CHINESE PHYSICS B, 2024, 33 (04)
  • [44] Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
    杨刚
    郑庭
    程启昊
    张会臣
    Chinese Physics B, 2024, 33 (04) : 358 - 367
  • [45] Pipe Flow of a Dense Emulsion: Homogeneous Shear-Thinning or Shear-Induced Migration?
    Abbas, Micheline
    Pouplin, Amelie
    Masbernat, Olivier
    Line, Alain
    Decarre, Sandrine
    AICHE JOURNAL, 2017, 63 (11) : 5182 - 5195
  • [46] Instability of channel flow of a shear-thinning White-Metzner fluid
    Wilson, HJ
    Rallison, JM
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1999, 87 (01) : 75 - 96
  • [47] General Shear-Thinning Dynamics of Confined Fluids
    Shinji Yamada
    Tribology Letters, 2002, 13 : 167 - 171
  • [48] POWER CONSUMPTION FOR MIXING OF SHEAR-THINNING FLUIDS
    Ghirisan , Adina
    Miclaus, Vasile
    STUDIA UNIVERSITATIS BABES-BOLYAI CHEMIA, 2021, 66 (02): : 247 - 254
  • [49] Sedimentation of Fractal Aggregates in Shear-Thinning Fluids
    Trofa, Marco
    D'Avino, Gaetano
    APPLIED SCIENCES-BASEL, 2020, 10 (09):
  • [50] On the rheological characteristics of the shear-thinning model fluids
    Jaworski, Z
    Kiljanski, T
    INZYNIERIA CHEMICZNA I PROCESOWA, 2005, 26 (03): : 513 - 522