Distillation of nonstabilizer states for universal quantum computation

被引:32
|
作者
Duclos-Cianci, Guillaume [1 ]
Svore, Krysta M. [2 ]
机构
[1] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada
[2] Microsoft Res, Quantum Architectures & Computat Grp, Redmond, WA 98052 USA
来源
PHYSICAL REVIEW A | 2013年 / 88卷 / 04期
关键词
GATES;
D O I
10.1103/PhysRevA.88.042325
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Magic-state distillation is a fundamental technique for realizing fault-tolerant universal quantum computing and produces high-fidelity Clifford eigenstates, called magic states, which can be used to implement the non-Clifford pi/8 gate. We propose an efficient protocol for distilling other nonstabilizer states that requires only Clifford operations, measurement, and magic states. One critical application of our protocol is efficiently and fault-tolerantly implementing arbitrary, non-Clifford, single-qubit rotations in, on average, constant online circuit depth and polylogarithmic (in precision) offline resource cost, resulting in significant improvements over state-of-the-art decomposition techniques. Finally, we show that our protocol is robust to noise in the resource states.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Universal computation with quantum fields
    Kazuki Ikeda
    Quantum Information Processing, 2020, 19
  • [22] Universal quantum computation by discontinuous quantum walk
    Underwood, Michael S.
    Feder, David L.
    PHYSICAL REVIEW A, 2010, 82 (04):
  • [23] Quantum cellular automaton for universal quantum computation
    Raussendorf, R
    PHYSICAL REVIEW A, 2005, 72 (02)
  • [24] Multi-agent blind quantum computation without universal cluster states
    Cao, Shuxiang
    NEW JOURNAL OF PHYSICS, 2023, 25 (10):
  • [25] Controllability and Universal Three-qubit Quantum Computation with Trapped Electron States
    L. H. Pedersen
    C. Rangan
    Quantum Information Processing, 2008, 7 : 33 - 42
  • [26] Controllability and universal three-qubit quantum computation with trapped electron states
    Pedersen, L. H.
    Rangan, C.
    QUANTUM INFORMATION PROCESSING, 2008, 7 (01) : 33 - 42
  • [27] Bounds on universal quantum computation with perturbed two-dimensional cluster states
    Orus, Roman
    Kalis, Henning
    Bornemann, Marcel
    Schmidt, Kai Phillip
    PHYSICAL REVIEW A, 2013, 87 (06):
  • [28] Universal Quantum Computation with Gapped Boundaries
    Cong, Iris
    Cheng, Meng
    Wang, Zhenghan
    PHYSICAL REVIEW LETTERS, 2017, 119 (17)
  • [29] Universal Quantum Computation with Little Entanglement
    Van den Nest, Maarten
    PHYSICAL REVIEW LETTERS, 2013, 110 (06)
  • [30] Universal quantum computation with the exchange interaction
    D. P. DiVincenzo
    D. Bacon
    J. Kempe
    G. Burkard
    K. B. Whaley
    Nature, 2000, 408 : 339 - 342