Analytical solutions of nonlinear system of fractional-order Van der Pol equations

被引:4
|
作者
Munjam, Shankar Rao [1 ]
Seshadri, Rajeswari [2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China
[2] Pondicherry Univ, Dept Math, Pondicherry 605014, India
关键词
Van der Pol equations; Periodic solutions; Fractional derivatives; Phase portrait; DUFFING-VAN; CHAOS;
D O I
10.1007/s11071-018-4725-9
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The double-well, in-phase and out-of-phase periodic solutions of the system of fractional-order Van der Pol equations and the exact solution of the nonlinear fractional-order Van der Pol equations with independent initial profiles are investigated in this paper. The influence of two main physical parameters such as angular frequency and the amplitude are included for the study. In addition, the difference between autonomous (i.e., f=1,g=M=0) and the non-autonomous (i.e., f=1,g0,M=0) nonlinear oscillators as well as the double-well VDPDO (i.e., f<0,g>0) cases is analysed. It is found that the variations in in-phase and out-of-phase periodic solutions and convergence rate strongly depend on the initial conditions with fractional orders. The effect of the physical parameters on phase portrait and the time history curves for various values of fractional orders are plotted and discussed.
引用
收藏
页码:2837 / 2854
页数:18
相关论文
共 50 条
  • [21] Super-harmonic resonance of fractional-order van der Pol oscillator
    Wei Peng
    Shen Yong-Jun
    Yang Shao-Pu
    ACTA PHYSICA SINICA, 2014, 63 (01)
  • [22] Bifurcation Control Of A Fractional-Order Van Der Pol Oscillator Based On The State Feedback
    Xiao, Min
    Jiang, Guoping
    Zheng, Wei Xing
    Yan, Senlin
    Wan, Youhong
    Fan, Chunxia
    ASIAN JOURNAL OF CONTROL, 2015, 17 (05) : 1756 - 1766
  • [23] Chaos in a generalized van der Pol system and in its fractional order system
    Ge, Zheng-Ming
    Hsu, Mao-Yuan
    CHAOS SOLITONS & FRACTALS, 2007, 33 (05) : 1711 - 1745
  • [24] Study of fractional order Van der Pol equation
    Mishra, V
    Das, S.
    Jafari, H.
    Ong, S. H.
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2016, 28 (01) : 55 - 60
  • [25] Accurate higher-order analytical approximate solutions to nonconservative nonlinear oscillators and application to van der Pol
    Lim, CW
    Lai, SK
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2006, 48 (05) : 483 - 492
  • [26] Dynamical analysis of Mathieu equation with two kinds of van der Pol fractional-order terms
    Wen, Shaofang
    Shen, Yongjun
    Li, Xianghong
    Yang, Shaopu
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2016, 84 : 130 - 138
  • [27] Primary resonance of fractional-order Duffing–van der Pol oscillator by harmonic balance method
    李素娟
    牛江川
    李向红
    Chinese Physics B, 2018, 27 (12) : 215 - 220
  • [28] Initial conditions-independent limit cycles of a fractional-order van der Pol oscillator
    Liu, Q. X.
    Liu, J. K.
    Chen, Y. M.
    JOURNAL OF VIBRATION AND CONTROL, 2016, 22 (08) : 2135 - 2146
  • [29] Chaos in a modified van der Pol system and in its fractional order systenis
    Ge, Zheng-Ming
    Zhang, An-Ray
    CHAOS SOLITONS & FRACTALS, 2007, 32 (05) : 1791 - 1822
  • [30] Analytical and numerical solutions of the Van Der Pol Equation
    J. Stefan Inst, Ljubljana, Slovenia
    Elektroteh Vestn Electrotech Rev, 4-5 (225-233):