Analytical solutions of nonlinear system of fractional-order Van der Pol equations

被引:4
|
作者
Munjam, Shankar Rao [1 ]
Seshadri, Rajeswari [2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China
[2] Pondicherry Univ, Dept Math, Pondicherry 605014, India
关键词
Van der Pol equations; Periodic solutions; Fractional derivatives; Phase portrait; DUFFING-VAN; CHAOS;
D O I
10.1007/s11071-018-4725-9
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The double-well, in-phase and out-of-phase periodic solutions of the system of fractional-order Van der Pol equations and the exact solution of the nonlinear fractional-order Van der Pol equations with independent initial profiles are investigated in this paper. The influence of two main physical parameters such as angular frequency and the amplitude are included for the study. In addition, the difference between autonomous (i.e., f=1,g=M=0) and the non-autonomous (i.e., f=1,g0,M=0) nonlinear oscillators as well as the double-well VDPDO (i.e., f<0,g>0) cases is analysed. It is found that the variations in in-phase and out-of-phase periodic solutions and convergence rate strongly depend on the initial conditions with fractional orders. The effect of the physical parameters on phase portrait and the time history curves for various values of fractional orders are plotted and discussed.
引用
收藏
页码:2837 / 2854
页数:18
相关论文
共 50 条
  • [1] Analytical solutions of nonlinear system of fractional-order Van der Pol equations
    Shankar Rao Munjam
    Rajeswari Seshadri
    Nonlinear Dynamics, 2019, 95 : 2837 - 2854
  • [2] Hopf Bifurcations of a Stochastic Fractional-Order Van der Pol System
    Liu, Xiaojun
    Hong, Ling
    Yang, Lixin
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [3] Dynamics of the fractional-order Van der Pol oscillator
    Barbosa, RS
    Machado, JAT
    Ferreira, IM
    Tar, JK
    ICCC 2004: SECOND IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL CYBERNETICS, PROCEEDINGS, 2004, : 373 - 378
  • [4] Efficient numerical simulation of fractional-order Van der Pol impulsive system
    Sharifi, Z.
    Moghaddam, B. P.
    Ilie, M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2024, 35 (03):
  • [5] An algorithm for the numerical solution of nonlinear fractional-order Van der Pol oscillator equation
    Jafari, H.
    Khalique, C. M.
    Nazari, M.
    MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (5-6) : 1782 - 1786
  • [6] Chaos in a Fractional-Order Modified Van Der Pol Oscillator
    Gao, Xin
    SPORTS MATERIALS, MODELLING AND SIMULATION, 2011, 187 : 603 - 608
  • [7] Stochastic response of fractional-order van der Pol oscillator
    Chen, Lincong
    Zhu, Weiqiu
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2014, 4 (01)
  • [8] Primary resonance of fractional-order van der Pol oscillator
    Shen, Yong-Jun
    Wei, Peng
    Yang, Shao-Pu
    NONLINEAR DYNAMICS, 2014, 77 (04) : 1629 - 1642
  • [9] Stochastic response of fractional-order van der Pol oscillator
    Lincong Chen
    Weiqiu Zhu
    Theoretical & Applied Mechanics Letters, 2014, 4 (01) : 74 - 78
  • [10] Primary resonance of fractional-order van der Pol oscillator
    Yong-Jun Shen
    Peng Wei
    Shao-Pu Yang
    Nonlinear Dynamics, 2014, 77 : 1629 - 1642