Development of an in vivo cleavable donor plasmid for targeted transgene integration by CRISPR-Cas9 and CRISPR-Cas12a

被引:4
|
作者
Ishibashi, Riki [1 ,2 ]
Maki, Ritsuko [1 ]
Kitano, Satsuki [3 ]
Miyachi, Hitoshi [3 ]
Toyoshima, Fumiko [1 ,2 ]
机构
[1] Kyoto Univ, Inst Life & Med Sci, Dept Biosyst Sci, Sakyo Ku, Kyoto 6068507, Japan
[2] Kyoto Univ, Grad Sch Biostudies, Dept Mammalian Regulatory Networks, Sakyo Ku, Kyoto 6068502, Japan
[3] Kyoto Univ, Inst Life & Med Sci, Reprod Engn Team, Sakyo Ku, Kyoto 6068507, Japan
关键词
ONE-STEP GENERATION; EFFICIENT GENERATION; PROGENITOR CELLS; MICE; SYSTEMS; MOUSE; GENE; ENDONUCLEASE; CRISPR/CAS9; REPORTER;
D O I
10.1038/s41598-022-22639-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The CRISPR-Cas system is widely used for genome editing of cultured cells and organisms. The discovery of a new single RNA-guided endonuclease, CRISPR-Cas12a, in addition to the conventional CRISPR-Cas9 has broadened the number of editable target sites on the genome. Here, we developed an in vivo cleavable donor plasmid for precise targeted knock-in of external DNA by both Cas9 and Cas12a. This plasmid, named pCriMGET_9-12a (plasmid of synthetic CRISPR-coded RNA target sequence-equipped donor plasmid-mediated gene targeting via Cas9 and Cas12a), comprises the protospacer-adjacent motif sequences of Cas9 and Cas12a at the side of an off-target free synthetic CRISPR-coded RNA target sequence and a multiple cloning site for donor cassette insertion. pCriMGET_9-12a generates a linearized donor cassette in vivo by both CRISPR-Cas9 and CRISPR-Cas12a, which resulted in increased knock-in efficiency in culture cells. This method also achieved > 25% targeted knock-in of long external DNA (> 4 kb) in mice by both CRISPR-Cas9 and CRISPR-Cas12a. The pCriMGET_9-12a system expands the genomic target space for transgene knock-in and provides a versatile, low-cost, and high-performance CRISPR genome editing tool.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] CRISPR/Cas9 targeted integration prolongs gene expression in vivo
    Stephens, C. J.
    Kashentseva, E.
    Everett, W.
    Kaliberova, L.
    Curiel, D. T.
    HUMAN GENE THERAPY, 2017, 28 (12) : A57 - A58
  • [22] Putting the brakes on CRISPR-Cas9
    Todorovic, Vesna
    NATURE METHODS, 2017, 14 (02) : 108 - 108
  • [23] CRISPR-Cas9: a world first?
    不详
    LANCET, 2018, 392 (10163): : 2413 - 2413
  • [24] Engineering Genes with CRISPR-Cas9
    Luo, Michelle L.
    Beisel, Chase L.
    CHEMICAL ENGINEERING PROGRESS, 2016, 112 (09) : 36 - 41
  • [25] Development and Applications of CRISPR-Cas9 for Genome Editing
    Zhang, Feng
    HUMAN GENE THERAPY, 2014, 25 (11) : A10 - A10
  • [26] Development and Applications of CRISPR-Cas9 for Genome Engineering
    Hsu, Patrick D.
    Lander, Eric S.
    Zhang, Feng
    CELL, 2014, 157 (06) : 1262 - 1278
  • [27] Protein Inhibitors of CRISPR-Cas9
    Bondy-Denomy, Joseph
    ACS CHEMICAL BIOLOGY, 2018, 13 (02) : 417 - 423
  • [28] Development and Applications of CRISPR-Cas9 for Genome Manipulations
    Zhang, Feng
    FASEB JOURNAL, 2015, 29
  • [29] Targeted mutagenesis in soybean using the CRISPR-Cas9 system
    Xianjun Sun
    Zheng Hu
    Rui Chen
    Qiyang Jiang
    Guohua Song
    Hui Zhang
    Yajun Xi
    Scientific Reports, 5
  • [30] Nanoparticles for CRISPR-Cas9 delivery
    Glass, Zachary
    Li, Yamin
    Xu, Qiaobing
    NATURE BIOMEDICAL ENGINEERING, 2017, 1 (11): : 854 - 855