Improving PolSAR Land Cover Classification With Radiometric Correction of the Coherency Matrix

被引:42
|
作者
Atwood, Donald K. [1 ]
Small, David [2 ]
Gens, Ruediger [1 ]
机构
[1] Univ Alaska Fairbanks, Inst Geophys, Fairbanks, AK 99775 USA
[2] Univ Zurich, Remote Sensing Labs, CH-8057 Zurich, Switzerland
关键词
Advanced land observing satellite (ALOS) PALSAR; land cover classification; polarimetry; remote sensing; synthetic aperture radar (SAR); UNSUPERVISED CLASSIFICATION; SCATTERING MODEL; SAR; DECOMPOSITION; COMPENSATION;
D O I
10.1109/JSTARS.2012.2186791
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The brightness of a SAR image is affected by topography due to varying projection between ground and image coordinates. For polarimetric SAR (PolSAR) imagery being used for purposes of land cover classification, this radiometric variability is shown to affect the outcome of a Wishart unsupervised classification in areas of moderate topography. The intent of this paper is to investigate the impact of applying a radiometric correction to the PolSAR coherency matrix for a region of boreal forest in interior Alaska. The gamma naught radiometric correction estimates the local illuminated area at each grid point in the radar geometry. Then, each element of the coherency matrix is divided by the local area to produce a polarimetric product that is radiometrically "flat." This paper follows two paths, one with and one without radiometric correction, to investigate the impact upon classification accuracy. Using a Landsat-derived land cover reference, the radiometric correction is shown to bring about significant qualitative and quantitative improvements in the land cover map. Confusion matrix analysis confirms the accuracy for most classes and shows a 15% improvement in the classification of the deciduous forest class.
引用
收藏
页码:848 / 856
页数:9
相关论文
共 50 条
  • [41] A Meta-Methodology for Improving Land Cover and Land Use Classification with SAR Imagery
    Soares, Marinalva Dias
    Dutra, Luciano Vieira
    Ostwald Pedro da Costa, Gilson Alexandre
    Feitosa, Raul Queiroz
    Negri, Rogerio Galante
    Diaz, Pedro M. A.
    REMOTE SENSING, 2020, 12 (06)
  • [42] Improving the Accuracy of Land Use and Land Cover Classification of Landsat Data in an Agricultural Watershed
    Dash, Padmanava
    Sanders, Scott L.
    Parajuli, Prem
    Ouyang, Ying
    REMOTE SENSING, 2023, 15 (16)
  • [43] The Improved Three-Step Semi-Empirical Radiometric Terrain Correction Approach for Supervised Classification of PolSAR Data
    Zhao, Lei
    Chen, Erxue
    Li, Zengyuan
    Fan, Yaxiong
    Xu, Kunpeng
    REMOTE SENSING, 2022, 14 (03)
  • [44] PolSAR Mosaic Normalization for Improved Land-Cover Mapping
    Antropov, Oleg
    Rauste, Yrjo
    Lonnqvist, Anne
    Hame, Tuomas
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2012, 9 (06) : 1074 - 1078
  • [45] IMPROVING THEMATIC MAPPER LAND COVER CLASSIFICATION USING FILTERED DATA
    ATKINSON, P
    CUSHNIE, JL
    TOWNSHEND, JRG
    WILSON, A
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 1985, 6 (06) : 955 - 961
  • [46] A New Spatial Attraction Model for Improving Subpixel Land Cover Classification
    Lu, Lizhen
    Huang, Yanlin
    Di, Liping
    Hang, Danwei
    REMOTE SENSING, 2017, 9 (04):
  • [47] Improving Urban Land Cover Classification Using Fuzzy Image Segmentation
    Lizarazo, Ivan
    Elsner, Paul
    TRANSACTIONS ON COMPUTATIONAL SCIENCE VI, 2009, 5730 : 41 - +
  • [48] Improving Land Cover Classification Using Genetic Programming for Feature Construction
    Batista, Joao E.
    Cabral, Ana I. R.
    Vasconcelos, Maria J. P.
    Vanneschi, Leonardo
    Silva, Sara
    REMOTE SENSING, 2021, 13 (09)
  • [49] The effect of atmospheric and topographic correction methods on land cover classification accuracy
    Vanonckelen, Steven
    Lhermitte, Stefaan
    Van Rompaey, Anton
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2013, 24 : 9 - 21
  • [50] The use of the Minnaert correction for land-cover classification in mountainous terrain
    Blesius, L
    Weirich, F
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (17) : 3831 - 3851