Optical scheme for generating hyperentanglement having photonic qubit and time-bin via quantum dot and cross-Kerr nonlinearity

被引:12
|
作者
Hong, Chang Ho [1 ]
Heo, Jino [2 ]
Kang, Min Sung [3 ]
Jang, Jingak [1 ]
Yang, Hyung Jin [4 ]
机构
[1] Natl Secur Res Inst, Base Technol Div, POB 1, Yuseong 34188, Daejeon, South Korea
[2] Chungbuk Natl Univ, Coll Elect & Comp Engn, Chungdae Ro 1, Cheongju, South Korea
[3] Korea Inst Sci & Technol, Ctr Quantum Informat, Seoul 136791, South Korea
[4] Korea Univ, Dept Phys, Sejong 339700, South Korea
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
关键词
BELL STATES; SPINS; TELEPORTATION; ENTANGLEMENT; GATE;
D O I
10.1038/s41598-018-19970-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We design an optical scheme to generate hyperentanglement correlated with degrees of freedom (DOFs) via quantum dots (QDs), weak cross-Kerr nonlinearities (XKNLs), and linearly optical apparatuses (including time-bin encoders). For generating hyperentanglement having its own correlations for two DOFs (polarization and time-bin) on two photons, we employ the effects of optical nonlinearities using a QD (photon-electron), a parity gate (XKNLs), and time-bin encodings (linear optics). In our scheme, the first nonlinear multi-qubit gate utilizes the interactions between photons and an electron of QD confined in a single-sided cavity, and the parity gate (second gate) uses weak XKNLs, quantum bus, and photon-number-resolving measurement to entangle the polarizations of two photons. Finally, for efficiency in generating hyperentanglement and for the experimental implementation of this scheme, we discuss how the QD-cavity system can be performed reliably, and also discuss analysis of the immunity of the parity gate (XKNLs) against the decoherence effect.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Photonic quantum network transmission assisted by the weak cross-Kerr nonlinearity
    Feng Wang
    Ming-Xing Luo
    Gang Xu
    Xiu-Bo Chen
    Yi-Xian Yang
    Science China(Physics,Mechanics & Astronomy), 2018, Mechanics & Astronomy)2018 (06) : 12 - 27
  • [12] Photonic quantum network transmission assisted by the weak cross-Kerr nonlinearity
    Feng Wang
    Ming-Xing Luo
    Gang Xu
    Xiu-Bo Chen
    Yi-Xian Yang
    Science China Physics, Mechanics & Astronomy, 2018, 61
  • [13] Generating entangled states of continuous variables via cross-Kerr nonlinearity
    Zhang, Zhi-Ming
    Khosa, Ashfaq H.
    Ikram, Manzoor
    Zubairy, M. Suhail
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2007, 40 (10) : 1917 - 1924
  • [14] Cross time-bin photonic entanglement for quantum key distribution
    Martin, A.
    Kaiser, F.
    Vernier, A.
    Beveratos, A.
    Scarani, V.
    Tanzilli, S.
    PHYSICAL REVIEW A, 2013, 87 (02):
  • [15] Distribution of hybrid entanglement and hyperentanglement with timebin for secure quantum channel under noise via weak cross-Kerr nonlinearity
    Heo, Jino
    Kang, Min-Sung
    Hong, Chang-Ho
    Yang, Hyung-Jin
    Choi, Seong-Gon
    Hong, Jong-Phil
    SCIENTIFIC REPORTS, 2017, 7
  • [16] Scheme for generating coherent-state superpositions with realistic cross-Kerr nonlinearity
    He, Bing
    Nadeem, Mustansar
    Bergou, Janos A.
    PHYSICAL REVIEW A, 2009, 79 (03):
  • [17] Scheme for generating cluster-type entangled squeezed vacuum states via cross-Kerr nonlinearity
    Wen, Jing-Ji
    Yeon, Kyu-Hwang
    Wang, Hong-Fu
    Zhang, Shou
    OPTICS COMMUNICATIONS, 2014, 324 : 81 - 84
  • [18] Scheme for generation of three-photon entangled W state assisted by cross-Kerr nonlinearity and quantum dot
    Jino Heo
    Changho Hong
    Seong-Gon Choi
    Jong-Phil Hong
    Scientific Reports, 9
  • [19] Remote Quantum Information Concentration Via Weak Cross-Kerr Nonlinearity
    Rui, Pinshu
    Zhang, Wen
    Liao, Yanlin
    Zhang, Ziyun
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2016, 55 (11) : 4798 - 4808
  • [20] Remote Quantum Information Concentration Via Weak Cross-Kerr Nonlinearity
    Pinshu Rui
    Wen Zhang
    Yanlin Liao
    Ziyun Zhang
    International Journal of Theoretical Physics, 2016, 55 : 4798 - 4808