Kinetics and Thermodynamics of Sorption for As(V) on the Porous Biomorph-Genetic Composite of α-Fe2O3/Fe3O4/C with Eucalyptus Wood Hierarchical Microstructure

被引:5
|
作者
Zhu, Yinian [1 ,2 ]
Zhu, Zongqiang [1 ,2 ]
Chen, Yudao [1 ]
Yang, Feng [3 ]
Qin, Hui [1 ]
Xie, Liwei [1 ]
机构
[1] Guilin Univ Technol, Coll Environm Sci & Engn, Guilin 541004, Guangxi, Peoples R China
[2] Guangxi Univ, Coll Light Ind & Food Engn, Nanning 530004, Guangxi, Peoples R China
[3] Nanjing Inst Technol, Dept Environm Engn, Nanjing 211167, Jiangsu, Peoples R China
来源
WATER AIR AND SOIL POLLUTION | 2013年 / 224卷 / 06期
基金
中国国家自然科学基金;
关键词
Eucalyptus wood template; Biomorphgenetic magnetic composite; Iron oxide; Hierarchical porous microstructure; Sorption; Arsenic(V); AQUEOUS-SOLUTION; ADSORPTIVE REMOVAL; ARSENIC REMOVAL; IRON; MAGNETITE; PH; DYES; NANOPARTICLES; GROUNDWATER; PHOSPHATE;
D O I
10.1007/s11270-013-1589-y
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A novel porous biomorph-genetic composite of alpha-Fe2O3/Fe3O4/C (PBGC-Fe/C) with eucalyptus wood template was prepared, characterized and tested for its sorption capacity of As(V) from aqueous solution. The result indicated that the PBGC-Fe/C material retained the hierarchical porous structure of eucalyptus wood with three different types of pores (widths 70 similar to 120, 4.1 similar to 6.4 and 0.1 similar to 1.3 mu m) originating from vessels, fibres and pits of the wood, respectively. Its surface area was measured to be 59.2 m(2)/g. With increasing initial As(V) concentration from 5 to 100 mg/L, the amounts of As(V) sorbed on the pulverized PBGC-Fe/C sorbent (<0.149 mm) increased from 0.50 to 4.01 mg/g at 25 degrees C, from 0.50 to 4.83 mg/g at 35 degrees C and from 0.50 to 4.19 mg/g at 45 degrees C, and the corresponding removal rates decreased from 99.97 to 40.10 % at 25 degrees C, 99.95 to 48.40 % at 35 degrees C and 99.92 to 42.05 % at 45 degrees C. At the initial concentrations of 5, 10 and 50 mg/L, the sorption capacities for the unpulverized PBGC-Fe/C sorbent (>3 mm) were determined to be 0.50, 0.99 and 2.49 mg/g, respectively, which exhibited a similar average value to those of fine particles or nanoparticles of iron oxides. The sorption could well be described by the pseudo-second-order kinetic equation. The equilibrium data were found to follow Freundlich as well as Langmuir isotherms.
引用
收藏
页数:19
相关论文
共 50 条
  • [11] Synthesis of Fe3O4, Fe2O3, Ag/Fe3O4 and Ag/Fe2O3 nanoparticles and their electrocatalytic properties
    Pan Lu
    Tang Jing
    Chen YongHong
    SCIENCE CHINA-CHEMISTRY, 2013, 56 (03) : 362 - 369
  • [12] Synthesis of Fe3O4, Fe2O3, Ag/Fe3O4 and Ag/Fe2O3 nanoparticles and their electrocatalytic properties
    Lu Pan
    Jing Tang
    YongHong Chen
    Science China Chemistry, 2013, 56 : 362 - 369
  • [13] Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: Facile synthesis and electromagnetic properties
    Wu, Hongjing
    Wu, Guanglei
    Wang, Liuding
    POWDER TECHNOLOGY, 2015, 269 : 443 - 451
  • [14] Study of the Kinetics of Reduction of Alpha Fe2O3 to Fe3O4 - 3.
    Heizmann, J.J.
    Becker, P.
    Baro, R.
    1600, (72):
  • [15] Construction of Fe3O4/Fe2O3 composite hollow spheres and their properties
    Wang, Debao
    Jiang, Lihong
    Wei, Xiaoxing
    Song, Caixia
    MATERIALS LETTERS, 2015, 138 : 164 - 166
  • [16] Study of the Kinetics of Reduction of alpha Fe2O3 to Fe3O4 - 2.
    Heizmann, J.J.
    Becker, P
    Baro, R.
    Memoires Scientifiques de la Revue de Metallurgie, 1973, 70 (09): : 625 - 636
  • [17] Kinetics for reduction of aciculate ultrafine α-Fe2O3 particles to Fe3O4 particles
    Li, CZ
    Hong, ZF
    JOURNAL OF SOLID STATE CHEMISTRY, 1997, 134 (02) : 248 - 252
  • [18] Fabrication of Magnetic α-Fe2O3/Fe3O4 Composite Particles by Nanosecond Laser Irradiation of α-Fe2O3 Powder in Water
    Kihara, Ryo
    Shigetaka, Akari
    Isshiki, Tsubasa
    Wada, Hiroyuki
    Yamamuro, Saeki
    Asahi, Tsuyoshi
    CHEMISTRY LETTERS, 2020, 49 (04) : 413 - 415
  • [19] The synthesis and electrochemical performance of α-Fe2O3/ Fe3O4 composite anode electrodes
    Shi, Lei
    Liu, Hong-Bo
    He, Yue-De
    Hong, Quan
    Yang, Li
    Gongneng Cailiao/Journal of Functional Materials, 2010, 41 (01): : 177 - 180
  • [20] Thermodynamic Properties of α-Fe2O3 and Fe3O4 Nanoparticles
    Spencer, Elinor C.
    Ross, Nancy L.
    Olsen, Rebecca E.
    Huang, Baiyu
    Kolesnikov, Alexander I.
    Woodfield, Brian F.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (17): : 9609 - 9616