Preparation of C/C-SiC Composites from All-Cellulose Precursors

被引:4
|
作者
Schneck, Tanja K. [1 ,2 ]
Mueller, Alexandra [2 ]
Hermanutz, Frank [2 ]
Buchmeiser, Michael R. [1 ,2 ]
机构
[1] Univ Stuttgart, Inst Polymer Chem, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
[2] German Inst Text & Fiber Res Denkendorf, Korschtalstr 26, D-73770 Denkendorf, Germany
关键词
all-cellulose composites; liquid silicon infiltration; phase composition; porosity; shaped ceramic matrix composites; SILICON-CARBIDE CERAMICS; MECHANICAL-PROPERTIES; CARBON-FIBER; WOOD; MICROSTRUCTURE; INFILTRATION; TEMPERATURE; PYROLYSIS; OXIDATION;
D O I
10.1002/mame.201800763
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
All-cellulose composites (ACCs) are manufactured from high-performance cellulose fibers and a cellulose-containing ionic liquid (IL) as matrix-forming dope via wet-winding processes, using different concentrations of cellulose in the IL. ACCs are carbonized at 1650 degrees C and then infiltrated with liquid silicon. Application of a carbonization aid (ammonium dihydrogenphosphate, ADHP) substantially improves the carbon yield after carbonization but also results in the depletion of the mechanical properties of the final carbon/carbon silicon carbide (C/C-SiC) material. The microstructure of the porous carbon/carbon preforms strongly depends on both the concentration of cellulose in the IL and the concentration of ADHP. A C/C-SiC composite manufactured from 6 wt% cellulose in the matrix-forming dope, in the absence of ADHP, has a maximum flexural strength of 60MPa. New C/C-SiC composites with different shapes including Z-profiles and tubes are successfully manufactured from pre-shaped ACC precursors. These composites keep their shape during carbonization and the final siliconization process step.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] C/C-SiC composites for advanced friction systems
    Krenkel, W
    Heidenreich, B
    Renz, R
    ADVANCED ENGINEERING MATERIALS, 2002, 4 (07) : 427 - 436
  • [22] Preparation of UHTC based coatings for C-SiC composites by slurry and CVD
    Xiang, Y.
    Li, W.
    Wang, S.
    Chen, Z-H
    MATERIALS TECHNOLOGY, 2012, 27 (03) : 257 - 260
  • [23] Preparation of All-Cellulose Composites Based on Controlled Dissolution Procedure
    Zhang, Qian
    Wang, Zhaoqi
    Hao, Sufen
    Huang, Jintian
    STARCH-STARKE, 2021, 73 (9-10):
  • [24] Electrical properties of C/C and C/C-SiC ceramic fibre composites
    Singh, Shraddha
    Srivastava, V. K.
    CERAMICS INTERNATIONAL, 2011, 37 (01) : 93 - 98
  • [25] Friction and wear properties of C/C-SiC braking composites
    Zhou, Xuan
    Zhu, Dongmei
    Xie, Qiao
    Luo, Fa
    Zhou, Wancheng
    CERAMICS INTERNATIONAL, 2012, 38 (03) : 2467 - 2473
  • [26] Study of rapid fabrication and microstructure of C/C-SiC composites
    Wang, JP
    Jin, ZH
    Qian, JM
    Qiao, GJ
    RARE METAL MATERIALS AND ENGINEERING, 2006, 35 (02) : 223 - 226
  • [27] Effect of damage on flexural modulus of C/C-SiC composites
    Srivastava, VK
    Maile, K
    Bothe, K
    Udoh, A
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2003, 354 (1-2): : 292 - 297
  • [28] Tribological behaviour of C/C-SiC composites-A review
    Kumar, Parshant
    Srivastava, V. K.
    JOURNAL OF ADVANCED CERAMICS, 2016, 5 (01) : 1 - 12
  • [29] OXIDATION BEHAVIOUR OF C/C-SiC COMPOSITES IN OPEN ATMOSPHERE
    Srivastava, V. K.
    Singh, Shraddha
    ADVANCED PROCESSING AND MANUFACTURING TECHNOLOGIES FOR STRUCTURAL AND MULTIFUNCTIONAL MATERIALS II, 2009, 29 (09): : 33 - 41
  • [30] Tribological Properties of C/C-SiC Composites for Brake Discs
    Jang, G. H.
    Cho, K. H.
    Park, S. B.
    Lee, W. G.
    Hong, U. S.
    Jang, H.
    METALS AND MATERIALS INTERNATIONAL, 2010, 16 (01) : 61 - 66