A Two Martian Years Survey of Water Ice Clouds on Mars With ACS Onboard TGO

被引:15
|
作者
Stcherbinine, Aurelien [1 ,2 ]
Montmessin, Franck [2 ]
Vincendon, Mathieu [3 ]
Wolff, Michael J. [4 ]
Vals, Margaux [2 ]
Korablev, Oleg [5 ]
Fedorova, Anna [5 ]
Trokhimovskiy, Alexander [5 ]
Lacombe, Gaetan [2 ]
Baggio, Lucio [2 ]
机构
[1] No Arizona Univ, Dept Astron & Planetary Sci, Flagstaff, AZ 86011 USA
[2] UVSQ Univ Paris Saclay, Guyancourt, France
[3] Univ Paris Saclay, Inst Astrophys Spatiale, CNRS, Orsay, France
[4] Space Sci Inst, Boulder, CO USA
[5] Space Res Inst IKI, Moscow, Russia
关键词
Mars atmosphere; water ice clouds; ExoMars TGO; IR spectroscopy; solar occultation; aerosols; VERTICAL-DISTRIBUTION; OPTICAL DEPTH; DUST; AEROSOL; ATMOSPHERE; SATURATION; CLIMATOLOGY; SCATTERING; EVOLUTION; SPECTRA;
D O I
10.1029/2022JE007502
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The middle infrared (MIR) channel of the atmospheric chemistry suite (ACS) instrument onboard the ExoMars Trace Gas Orbiter ESA-Roscosmos mission has performed Solar occultation measurements of the Martian atmosphere in the 2.3-4.2 mu m spectral range since March 2018, which now covers two Martian years (MY). We use the methodology previously developed for the study of the MY 34 global dust storm (GDS) (Stcherbinine et al., 2020, https://doi.org/10.1029/2019je006300) to monitor the properties (effective radii, extinction, and altitude) of the Martian water ice clouds over the first two Martian years covered by ACS-MIR. The observations encompass the period L-s = 163 degrees in MY 34 to L-s = 181 degrees in MY 36. We determine that the typical altitude of the clouds varies by 20-40 km between the summer and winter, with a maximum extension up to 80 km during summer in the midlatitudes. Similarly, we also note that for a limited temporal range, the altitude of the clouds also varies by 20-40 km between the polar regions and the midlatitudes. We also compare observations acquired during the MY 34 GDS to observations from the same period in MY 35, using the latter as a reference to characterize the effects of this GDS on the clouds' properties. In addition, we compare our retrievals with the predictions of the Mars planetary climate model, which shows a reasonable agreement overall for the altitude of the clouds, although the model usually predicts lower altitudes for the top of the clouds.
引用
收藏
页数:20
相关论文
共 50 条
  • [11] Evaluation of the Capability of ExoMars-TGO NOMAD Infrared Nadir Channel for Water Ice Clouds Detection on Mars
    Lozano, Luca Ruiz
    Karatekin, Ozgur
    Dehant, Veronique
    Bellucci, Giancarlo
    Oliva, Fabrizio
    D'Aversa, Emiliano
    Carrozzo, Filippo Giacomo
    Altieri, Francesca
    Thomas, Ian R.
    Willame, Yannick
    Robert, Severine
    Vandaele, Ann Carinne
    Daerden, Frank
    Ristic, Bojan
    Patel, Manish R.
    Lopez Moreno, Jose Juan
    REMOTE SENSING, 2022, 14 (17)
  • [12] Martian water ice clouds: A view from Mars Global Surveyor Thermal Emission Spectrometer
    Hale, A. Snyder
    Tamppari, L. K.
    Bass, D. S.
    Smith, M. D.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2011, 116
  • [13] Mars Water-Ice Clouds and Precipitation
    Whiteway, J. A.
    Komguem, L.
    Dickinson, C.
    Cook, C.
    Illnicki, M.
    Seabrook, J.
    Popovici, V.
    Duck, T. J.
    Davy, R.
    Taylor, P. A.
    Pathak, J.
    Fisher, D.
    Carswell, A. I.
    Daly, M.
    Hipkin, V.
    Zent, A. P.
    Hecht, M. H.
    Wood, S. E.
    Tamppari, L. K.
    Renno, N.
    Moores, J. E.
    Lemmon, M. T.
    Daerden, F.
    Smith, P. H.
    SCIENCE, 2009, 325 (5936) : 68 - 70
  • [14] An Analogical Experiment of Mars Rover Penetrating Radar Onboard Chinese "Zhurong" Martian Rover on Dry/Water Ice Detection
    Hai, L. I. U.
    Jianhui, L., I
    Xu, Meng
    Bin, Zhou
    Guangyou, Fang
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2022, 44 (04) : 1336 - 1342
  • [15] Observations of Martian ice clouds by the Mars Global Surveyor Thermal Emission Spectrometer: The First Martian year
    Pearl, JC
    Smith, MD
    Conrath, BJ
    Bandfield, JL
    Christensen, PR
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2001, 106 (E6) : 12325 - 12338
  • [16] Estimating the altitudes of Martian water-ice clouds above the Mars Science Laboratory rover landing site
    Campbell, Charissa L.
    Kling, Alexandre M.
    Guzewich, Scott D.
    Smith, Christina L.
    Kloos, Jacob L.
    Lemmon, Mark T.
    Moore, Casey A.
    Cooper, Brittney A.
    Haberle, Robert M.
    Moores, John E.
    PLANETARY AND SPACE SCIENCE, 2020, 182 (182)
  • [17] High Resolution Map of Water in the Martian Regolith Observed by FREND Neutron Telescope Onboard ExoMars TGO
    Malakhov, A., V
    Mitrofanov, I. G.
    Golovin, D., V
    Litvak, M. L.
    Sanin, A. B.
    Djachkova, M., V
    Lukyanov, N., V
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2022, 127 (05)
  • [18] ANALYSES OF TWO MARTIAN METEORITES FOR THE RAMAN LASER SPECTROMETER ONBOARD EXO MARS
    Weber, I.
    Boettger, U.
    Jessberger, E. K.
    Huebers, H. W.
    METEORITICS & PLANETARY SCIENCE, 2011, 46 : A248 - A248
  • [19] Mapping water ice clouds on Mars with MRO/MARCI
    Wolff, Michael J.
    Clancy, R. Todd
    Kahre, Melinda A.
    Haberle, Robert M.
    Forget, Francois
    Cantor, Bruce A.
    Malin, Michael C.
    ICARUS, 2019, 332 : 24 - 49
  • [20] The influence of radiatively active water ice clouds on the Martian climate
    Madeleine, J. -B.
    Forget, F.
    Millour, E.
    Navarro, T.
    Spiga, A.
    GEOPHYSICAL RESEARCH LETTERS, 2012, 39