Removability of singularity for nonlinear elliptic equations with p(x)-growth

被引:0
|
作者
Fu, Yongqiang [1 ]
Shan, Yingying [1 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
variable exponent space; isolated singularity; removable singularity; SPACES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using Moser's iteration method, we investigate the problem of removable isolated singularities for elliptic equations with p(x)-type nonstandard growth. We give a sufficient condition for removability of singularity for the equations in the framework of variable exponent Sobolev spaces.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [41] Sharp gradient estimates for quasilinear elliptic equations with p(x) growth on nonsmooth domains
    Adimurthi, Karthik
    Byun, Sun-Sig
    Park, Jung-Tae
    JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (12) : 3411 - 3469
  • [42] On Carlson's Type Removability Test for the Degenerate Quasilinear Elliptic Equations
    Mamedov, Farman I.
    Quliyev, Aslan D.
    Mirheydarli, Mirfaig M.
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 2011
  • [43] Removability of singularities for a class of fully non-linear elliptic equations
    Gonzalez, Maria del Mar
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2006, 27 (04) : 439 - 466
  • [44] On the removability of isolated singular points for elliptic equations involving variable exponent
    Fu, Yongqiang
    Shan, Yingying
    ADVANCES IN NONLINEAR ANALYSIS, 2016, 5 (02) : 121 - 132
  • [45] On removability of singularities on manifolds for solutions of non-linear elliptic equations
    Skrypnik, II
    SBORNIK MATHEMATICS, 2003, 194 (9-10) : 1361 - 1381
  • [46] Lorentz estimates to nonlinear elliptic obstacle problems of p(x)-growth in Reifenberg domains
    Liang, Shuang
    Zheng, Shenzhou
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 501 (01)
  • [47] Estimates for Blow-Up Solutions to Nonlinear Elliptic Equations with p-Growth in the Gradient
    Ferone, V.
    Giarrusso, E.
    Messano, B.
    Posteraro, M. R.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2010, 29 (02): : 219 - 234
  • [48] MULTIPLICITY OF SOLUTIONS FOR QUASILINEAR ELLIPTIC EQUATIONS WITH SINGULARITY
    Li, Juan
    BOUNDARY VALUE PROBLEMS, INTEGRAL EQUATIONS AND RELATED PROBLEMS, 2011, : 215 - 224
  • [49] Quasilinear elliptic equations with Neumann boundary and singularity
    Bing-yu Kou
    Shuang-jie Peng
    Acta Mathematicae Applicatae Sinica, English Series, 2009, 25 : 631 - 646
  • [50] Quasilinear Elliptic Equations with Neumann Boundary and Singularity
    Kou, Bing-yu
    Peng, Shuang-jie
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2009, 25 (04): : 631 - 646