Towards recovery of conditional vectors from conditional generative adversarial networks

被引:2
|
作者
Ding, Sihao [1 ]
Wallin, Andreas [1 ]
机构
[1] Volvo Cars, R&D Tech Ctr, 335 E Middlefield Rd, Mountain View, CA 94043 USA
关键词
Generative adversarial networks; Conditional; Recover;
D O I
10.1016/j.patrec.2019.02.020
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A conditional Generative Adversarial Network allows for generating samples conditioned on certain external information. Being able to recover latent and conditional vectors from a conditional GAN can be potentially valuable in various applications, ranging from image manipulation for entertaining purposes to diagnosis of the neural networks for security purposes. In this work, we show that it is possible to recover both latent and conditional vectors from generated images given the generator of a conditional generative adversarial network. Such a recovery is not trivial due to the often multi-layered non-linearity of deep neural networks. Furthermore, the effect of such recovery applied on real natural images are investigated. We discovered that there exists a gap between the recovery performance on generated and real images, which we believe comes from the difference between generated data distribution and real data distribution. Experiments are conducted to evaluate the recovered conditional vectors and the reconstructed images from these recovered vectors quantitatively and qualitatively, showing promising results. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:66 / 72
页数:7
相关论文
共 50 条
  • [21] Ultrasonic imaging using conditional generative adversarial networks
    Molinier, Nathan
    Painchaud-April, Guillaume
    Le Duff, Alain
    Toews, Matthew
    Belanger, Pierre
    ULTRASONICS, 2023, 133
  • [22] Quantum State Tomography with Conditional Generative Adversarial Networks
    Ahmed, Shahnawaz
    Sanchez Munoz, Carlos
    Nori, Franco
    Kockum, Anton Frisk
    PHYSICAL REVIEW LETTERS, 2021, 127 (14)
  • [23] CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS FOR ACOUSTIC ECHO CANCELLATION
    Pastor-Naranjo, Fran
    del Amor, Rocio
    Silva-Rodriguez, Julio
    Ferrer, Miguel
    Pinero, Gema
    Naranjo, Valery
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 85 - 89
  • [24] A framework for personalized recommendation with conditional generative adversarial networks
    Jing Wen
    Xi-Ran Zhu
    Chang-Dong Wang
    Zhihong Tian
    Knowledge and Information Systems, 2022, 64 : 2637 - 2660
  • [25] Interpolating Seismic Data With Conditional Generative Adversarial Networks
    Oliveira, Dario A. B.
    Ferreira, Rodrigo S.
    Silva, Reinaldo
    Brazil, Emilio Vital
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (12) : 1952 - 1956
  • [26] Procedural Generation of Roads with Conditional Generative Adversarial Networks
    Kelvin, Lin Ziwen
    Bhojan, Anand
    2020 IEEE SIXTH INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM 2020), 2020, : 277 - 281
  • [27] Conditional Generative Adversarial Networks for Domain Transfer: A Survey
    Zhou, Guoqiang
    Fan, Yi
    Shi, Jiachen
    Lu, Yuyuan
    Shen, Jun
    APPLIED SCIENCES-BASEL, 2022, 12 (16):
  • [28] Generation of Synthetic Data with Conditional Generative Adversarial Networks
    Vega-Marquez, Belen
    Rubio-Escudero, Cristina
    Nepomuceno-Chamorro, Isabel
    LOGIC JOURNAL OF THE IGPL, 2022, 30 (02) : 252 - 262
  • [29] MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis
    Kumar, Kundan
    Kumar, Rithesh
    de Boissiere, Thibault
    Gestin, Lucas
    Teoh, Wei Zhen
    Sotelo, Jose
    de Brebisson, Alexandre
    Bengio, Yoshua
    Courville, Aaron
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [30] Clustering Using Conditional Generative Adversarial Networks (cGANs)
    Ruzicka, Marek
    Dopiriak, Matus
    2023 33RD INTERNATIONAL CONFERENCE RADIOELEKTRONIKA, RADIOELEKTRONIKA, 2023,