COSMOLOGICAL CONSTRAINTS FROM SUNYAEV-ZEL'DOVICH-SELECTED CLUSTERS WITH X-RAY OBSERVATIONS IN THE FIRST 178 deg2 OF THE SOUTH POLE TELESCOPE SURVEY

被引:206
|
作者
Benson, B. A. [1 ,2 ]
de Haan, T. [3 ]
Dudley, J. P. [3 ]
Reichardt, C. L. [4 ]
Aird, K. A.
Andersson, K. [5 ,6 ]
Armstrong, R. [7 ]
Ashby, M. L. N. [8 ]
Bautz, M. [6 ]
Bayliss, M. [9 ]
Bazin, G. [5 ,10 ]
Bleem, L. E. [1 ,11 ]
Brodwin, M. [12 ]
Carlstrom, J. E. [1 ,2 ,11 ,13 ,14 ,24 ]
Chang, C. L. [1 ,2 ,14 ]
Cho, H. M. [15 ]
Clocchiatti, A. [16 ]
Crawford, T. M. [1 ,13 ,24 ]
Crites, A. T. [1 ,13 ,24 ]
Desai, S. [5 ,10 ]
Dobbs, M. A. [3 ]
Foley, R. J. [8 ]
Forman, W. R. [8 ]
George, E. M. [4 ]
Gladders, M. D. [1 ,13 ,24 ]
Gonzalez, A. H. [17 ]
Halverson, N. W. [18 ,19 ]
Harrington, N. [4 ]
High, F. W. [1 ,13 ,24 ]
Holder, G. P. [3 ]
Holzapfel, W. L. [4 ]
Hoover, S. [1 ,2 ]
Hrubes, J. D.
Jones, C. [8 ]
Joy, M. [20 ]
Keisler, R. [1 ,11 ]
Knox, L. [21 ]
Lee, A. T. [4 ,22 ]
Leitch, E. M. [1 ,13 ,24 ]
Liu, J. [5 ,10 ]
Lueker, M. [4 ,23 ]
Luong-Van, D.
Mantz, A. [1 ]
Marrone, D. P. [13 ,24 ]
McDonald, M. [6 ]
McMahon, J. J. [1 ,2 ,25 ]
Mehl, J. [1 ,13 ,24 ]
Meyer, S. S. [1 ,2 ,11 ,13 ,24 ]
Mocanu, L. [1 ,13 ,24 ]
Mohr, J. J. [5 ,10 ,26 ]
机构
[1] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA
[2] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA
[3] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
[4] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[5] Univ Munich, Dept Phys, D-81679 Munich, Germany
[6] MIT, MIT Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA
[7] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA
[8] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
[9] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[10] Excellence Cluster Universe, D-85748 Garching, Germany
[11] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[12] Univ Missouri, Dept Phys, Kansas City, MO 64110 USA
[13] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA
[14] Argonne Natl Lab, Argonne, IL 60439 USA
[15] NIST, Quantum Devices Grp, Boulder, CO 80305 USA
[16] PUC, Dept Astron & Astrofs, Santiago 22, Chile
[17] Univ Florida, Dept Astron, Gainesville, FL 32611 USA
[18] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA
[19] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[20] NASA, Dept Space Sci, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA
[21] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
[22] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA
[23] CALTECH, Pasadena, CA 91125 USA
[24] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA
[25] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[26] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany
[27] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA
[28] Case Western Reserve Univ, CERCA, Cleveland, OH 44106 USA
[29] Univ Minnesota, Dept Phys, Minneapolis, MN 55455 USA
[30] Space Telescope Sci Inst, Baltimore, MD 21218 USA
[31] Sch Art Inst Chicago, Liberal Arts Dept, Chicago, IL 60603 USA
[32] Yale Univ, Dept Phys, New Haven, CT 06520 USA
来源
ASTROPHYSICAL JOURNAL | 2013年 / 763卷 / 02期
基金
美国国家科学基金会;
关键词
cosmic background radiation; cosmology: observations; galaxies: clusters: general; large-scale structure of universe; MASSIVE GALAXY CLUSTERS; MICROWAVE BACKGROUND ANISOTROPIES; HUBBLE-SPACE-TELESCOPE; WEAK-LENSING MASSES; OBSERVED GROWTH; STAR-FORMATION; SIMULATIONS; PRECISION; EVOLUTION; ENERGY;
D O I
10.1088/0004-637X/763/2/147
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We usemeasurements from the South Pole Telescope (SPT) Sunyaev-Zel'dovich (SZ) cluster survey in combination with X-ray measurements to constrain cosmological parameters. We present a statistical method that fits for the scaling relations of the SZ and X-ray cluster observables with mass while jointly fitting for cosmology. The method is generalizable to multiple cluster observables, and self-consistently accounts for the effects of the cluster selection and uncertainties in cluster mass calibration on the derived cosmological constraints. We apply this method to a data set consisting of an SZ-selected catalog of 18 galaxy clusters at z > 0.3 from the first 178 deg(2) of the 2500 deg(2) SPT-SZ survey, with 14 clusters having X-ray observations from either Chandra or XMM-Newton. Assuming a spatially flat Lambda CDM cosmological model, we find the SPT cluster sample constrains sigma(8)(Omega(m)/0.25)(0.30) = 0.785 +/- 0.037. In combination with measurements of the cosmic microwave background (CMB) power spectrum from the SPT and the seven-year Wilkinson Microwave Anisotropy Probe data, the SPT cluster sample constrains sigma(8) = 0.795 +/- 0.016 and Omega(m) = 0.255 +/- 0.016, a factor of 1.5 improvement on each parameter over the CMB data alone. We consider several extensions beyond the Lambda CDM model by including the following as free parameters: the dark energy equation of state (w), the sum of the neutrino masses (Sigma m(nu)), the effective number of relativistic species (N-eff), and a primordial non-Gaussianity (f(NL)). We find that adding the SPT cluster data significantly improves the constraints on w and Sigma m(nu) beyond those found when using measurements of the CMB, supernovae, baryon acoustic oscillations, and the Hubble constant. Considering each extension independently, we best constrain w = -0.973 +/- 0.063 and the sum of neutrino masses Sigma m(nu) < 0.28 eV at 95% confidence, a factor of 1.25 and 1.4 improvement, respectively, over the constraints without clusters. Assuming a Lambda CDM model with a free N-eff and Sigma m(nu), we measure N-eff = 3.91 +/- 0.42 and constrain Sigma m(nu) < 0.63 eV at 95% confidence. We also use the SPT cluster sample to constrain f(NL) = -220 +/- 317, consistent with zero primordial non-Gaussianity. Finally, we discuss the current systematic limitations due to the cluster mass calibration, and future improvements for the recently completed 2500 deg(2) SPT-SZ survey. The survey has detected similar to 500 clusters with a median redshift of similar to 0.5 and a median mass of similar to 2.3 x 10(14) M-circle dot h(-1) and, when combined with an improved cluster mass calibration and existing external cosmological data sets will significantly improve constraints on w.
引用
收藏
页数:21
相关论文
共 33 条
  • [31] Inferences from Surface Brightness Fluctuations of Zwicky 3146 via the Sunyaev-Zel'dovich Effect and X-Ray Observations (vol 951, 41, 2023)
    Romero, Charles E.
    Gaspari, Massimo
    Schellenberger, Gerrit
    Bhandarkar, Tanay
    Devlin, Mark
    Dicker, Simon R.
    Forman, William
    Khatri, Rishi
    Kraft, Ralph
    Di Mascolo, Luca
    Mason, Brian S.
    Moravec, Emily
    Mroczkowski, Tony
    Nulsen, Paul
    Orlowski-Scherer, John
    Sarmiento, Karen Perez
    Sarazin, Craig
    Sievers, Jonathan
    Su, Yuanyuan
    ASTROPHYSICAL JOURNAL, 2024, 965 (02):
  • [32] Joint analysis of cluster observations. I. Mass profile of Abell 478 from combined X-ray, Sunyaev-Zel'dovich, and weak-lensing data
    Mahdavi, Andisheh
    Hoekstra, Henk
    Babul, Arif
    Sievers, Jonathan
    Myers, Steven T.
    Henry, J. Patrick
    ASTROPHYSICAL JOURNAL, 2007, 664 (01): : 162 - 180
  • [33] The XMM-BCS galaxy cluster survey I. The X-ray selected cluster catalog from the initial 6 deg2
    Suhada, R.
    Song, J.
    Boehringer, H.
    Mohr, J. J.
    Chon, G.
    Finoguenov, A.
    Fassbender, R.
    Desai, S.
    Armstrong, R.
    Zenteno, A.
    Barkhouse, W. A.
    Bertin, E.
    Buckley-Geer, E. J.
    Hansen, S. M.
    High, F. W.
    Lin, H.
    Muehlegger, M.
    Ngeow, C. C.
    Pierini, D.
    Pratt, G. W.
    Verdugo, M.
    Tucker, D. L.
    ASTRONOMY & ASTROPHYSICS, 2012, 537