A mathematical framework for incorporating anatomical knowledge in DT-MRI analysis

被引:9
|
作者
Maddah, Mahnaz [1 ]
Zollei, Lilla [2 ]
Grimson, W. Eric L. [1 ]
Westin, Carl-Fredrik [3 ]
Wells, William M. [3 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Massachusetts Gen Hosp, Martinos Ctr Biomed Imaging, Boston, MA 02129 USA
[3] Brigham & Womens Hosp, Surg Planning Lab, Boston, MA 02115 USA
关键词
diffusion tensor MRI; clustering; anatomical information; tract-oriented quantitative analysis;
D O I
10.1109/ISBI.2008.4540943
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We propose a Bayesian approach to incorporate anatomical information in the clustering of fiber trajectories. An expectation-maximization (EM) algorithm is used to cluster the trajectories, in which an atlas serves as the prior on the labels. The atlas guides the clustering algorithm and makes the resulting bundles anatomically meaningful. In addition, it provides the seed points for the tractography and initial settings of the EM algorithm. The proposed approach provides a robust and automated tool for tract-oriented analysis both in a single subject and over a population.
引用
收藏
页码:105 / +
页数:2
相关论文
共 50 条
  • [21] DT-MRI fiber tracking: A shortest paths approach
    Zalesky, Andrew
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2008, 27 (10) : 1458 - 1471
  • [22] Anatomical connectivity in the central nervous system revealed by diffusion tensor magnetic resonance imaging (DT-MRI)
    Özarslan, E
    Mareci, TH
    QUANTITATIVE NEUROSCIENCE: MODELS, ALGORITHMS, DIAGNOSTICS, AND THERAPEUTIC APPLICATIONS, 2004, 2 : 145 - 169
  • [23] Fast and accurate connectivity analysis between functional regions based on DT-MRI
    Merhof, Dorit
    Richter, Mirco
    Enders, Frank
    Hastreiter, Peter
    Ganslandt, Oliver
    Buchfelder, Michael
    Nimsky, Christopher
    Greiner, Guenther
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2006, PT 2, 2006, 4191 : 225 - 233
  • [24] A fast and rigorous anisotropic smoothing method for DT-MRI
    Castano-Moraga, C. A.
    Lenglet, C.
    Deriche, R.
    Ruiz-Alzola, J.
    2006 3RD IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1-3, 2006, : 93 - +
  • [25] Mixtures of gaussians on tensor fields for DT-MRI segmentation
    de Luis-Garcia, Rodrigo
    Alberola-Lopez, Carlos
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2007, PT 1, PROCEEDINGS, 2007, 4791 : 319 - +
  • [26] Signal LMMSE estimation from multiple samples in MRI and DT-MRI
    Aja-Fernandez, S.
    Alberola-Lopez, C.
    Westin, C. -F.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION- MICCAI 2007, PT 2, PROCEEDINGS, 2007, 4792 : 368 - +
  • [27] Variational frameworks for DT-MRI estimation, regularization and visualization
    Tschumperlé, D
    Deriche, R
    NINTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS I AND II, PROCEEDINGS, 2003, : 116 - 121
  • [28] In vivo fiber tractography using DT-MRI data
    Basser, PJ
    Pajevic, S
    Pierpaoli, C
    Duda, J
    Aldroubi, A
    MAGNETIC RESONANCE IN MEDICINE, 2000, 44 (04) : 625 - 632
  • [29] Interpolation of vector fields from human cardiac DT-MRI
    Yang, F.
    Zhu, Y. M.
    Rapacchi, S.
    Luo, J. H.
    Robini, M.
    Croisille, P.
    PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (05): : 1415 - 1430
  • [30] Visualizing the brain structure with a DT-MRI minimum spanning tree
    Graduate School of Information Science and Technology, University of Tokyo, Japan
    CEUR Workshop Proc., (42-52):