Lifts of C∞- and L∞-morphisms to G∞-morphisms

被引:0
|
作者
Ginot, G [1 ]
Halbout, G
机构
[1] Univ Paris 13, Lab Analyse Geometrie & Applicat, Villetaneuse, France
[2] Ecole Normale Super, Cachan, France
[3] Univ Strasbourg 1, Inst Rech Math Avancee, Strasbourg, France
[4] CNRS, Strasbourg, France
关键词
deformation quantization; star-product; homotopy formulas; homological mehtods;
D O I
10.1090/S0002-9939-05-08126-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let g(2) be the Hochschild complex of cochains on C-infinity(R-n) and let g(1) be the space of multivector fields on R-n. In this paper we prove that given any G(infinity)-structure (i.e. Gerstenhaber algebra up to homotopy structure) on g(2), and any C infinity-morphism phi (i.e. morphism of a commutative, associative algebra up to homotopy) between g(1) and g(2), there exists a G infinity-morphism F between g(1) and g(2) that restricts to phi We also show that any L infinity-morphism (i.e. morphism of a Lie algebra up to homotopy), in particular the one constructed by Kontsevich, can be deformed into a G infinity-morphism, using Tamarkin's method for any G infinity-structure on g(2). We also show that any two of such G infinity-morphisms are homotopic.
引用
收藏
页码:621 / 630
页数:10
相关论文
共 50 条
  • [21] Subharmonic morphisms
    Arsinte, Vasile
    BSG PROCEEDINGS 18 - PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF DIFFERENTIAL GEOMETRY AND DYNAMICAL SYSTEMS (DGDS-2010), 2011, 18 : 11 - 22
  • [22] Biharmonic morphisms
    Chadli, Mustapha
    El Kadiri, Mohamed
    Haddad, Sabah
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2005, 46 (01): : 145 - 159
  • [23] Lyndon morphisms
    Richomme, G
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2003, 10 : 761 - 785
  • [24] L MORPHISMS - BOUNDED DELAY AND REGULARITY OF AMBIGUITY
    HONKALA, J
    SALOMAA, A
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 510 : 566 - 574
  • [25] Cohomology of morphisms
    Bendiffalah, B
    Guin, D
    COMMUNICATIONS IN ALGEBRA, 1998, 26 (12) : 3939 - 3951
  • [26] Skrepa morphisms
    Shokurov, V. V.
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2020, 16 (01) : 35 - 124
  • [27] Semiregular morphisms
    Nicholson, WK
    Zhou, Y
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (01) : 219 - 233
  • [28] Moishezon morphisms
    Kollar, Janos
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2022, 18 (04) : 1661 - 1687
  • [29] Recognizability of morphisms
    Beal, Marie-Pierre
    Perrin, Dominique
    Restivo, Antonio
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (11) : 3578 - 3602
  • [30] Sorting morphisms
    Augusteijn, L
    ADVANCED FUNCTIONAL PROGRAMMING, 1999, 1608 : 1 - 27