ON DISTANCES IN GENERALIZED SIERPINSKI GRAPHS

被引:8
|
作者
Estrada-Moreno, Alejandro [1 ]
Rodriguez-Bazan, Erick D. [2 ]
Rodriguez-Velazquez, Juan A. [3 ]
机构
[1] Open Univ Catalonia, Comp Sci Dept IN3, Av Carl Friedrich Gauss 5, Barcelona 08860, Spain
[2] Cent Univ Las Villas, Dept Matemath, Carretera Camajuani Km 5 1-2, Villa Clara 50100, Cuba
[3] Univ Rovira & Virgili, Dept Engn Informat & Matemat, Av Paisos Catalans 26, E-43007 Tarragona, Spain
关键词
Sierpitiski graphs; Generalized Sierpitiski graphs; Distances in graphs; SIERPINSKI GRAPHS; METRIC DIMENSION; SHORTEST PATHS; VERTICES; CODES;
D O I
10.2298/AADM160802001E
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose formulas for the distance between vertices of a generalized Sierpinski graph S(G, t) in terms of the distance between vertices of the base graph G. In particular, we deduce a recursive formula for the distance between an arbitrary vertex and an extreme vertex of S(G, t), and we obtain a recursive formula for the distance between two arbitrary vertices of S(G, t) when the base graph is triangle-free. From these recursive formulas, we provide algorithms to compute the distance between vertices of S(G, t). In addition, we give an explicit formula for the diameter and radius of S(G, t) when the base graph is a tree.
引用
收藏
页码:49 / 69
页数:21
相关论文
共 50 条
  • [21] The median of Sierpinski graphs
    Balakrishnan, Kannan
    Changat, Manoj
    Hinz, Andreas M.
    Lekha, Divya Sindhu
    DISCRETE APPLIED MATHEMATICS, 2022, 319 : 159 - 170
  • [22] Sharp bounds on certain degree based topological indices for generalized Sierpinski graphs
    Imran, Muhammad
    Jamil, Muhammad Kamran
    CHAOS SOLITONS & FRACTALS, 2020, 132
  • [23] RESISTANCE DISTANCES OF STRETCHED SIERPINSKI NETWORKS
    Fan, Jiaqi
    Li, Yuanyuan
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (05)
  • [24] GENERALIZED SIERPINSKI NUMBERS
    Filaseta, Michael
    Groth, Robert
    Luckner, Thomas
    COLLOQUIUM MATHEMATICUM, 2023, 174 (02) : 191 - 201
  • [25] Generalized problem of Sierpinski
    Sylvain, NF
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1998, (06): : 56 - 57
  • [26] Coloring the Square of Sierpinski Graphs
    Xue, Bing
    Zuo, Liancui
    Li, Guojun
    GRAPHS AND COMBINATORICS, 2015, 31 (05) : 1795 - 1805
  • [27] Intruder capture in sierpinski graphs
    Luccio, Flaminia L.
    FUN WITH ALGORITHMS, PROCEEDINGS, 2007, 4475 : 249 - 261
  • [28] Properties of Sierpinski Triangle Graphs
    Bickle, Allan
    COMBINATORICS, GRAPH THEORY AND COMPUTING, SEICCGTC 2021, 2024, 448 : 295 - 303
  • [29] Broadcasting in Sierpinski gasket graphs
    Shanthakumari, A.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2015, 92 : 111 - 119
  • [30] TOPOLOGICAL INDICES OF SIERPINSKI GASKET AND SIERPINSKI GASKET RHOMBUS GRAPHS
    Padmapriya, P.
    Mathad, Veena
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (01): : 136 - 148