Vibration-based MEMS Piezoelectric Energy Harvester for Power Optimization

被引:5
|
作者
Sidek, Othman [1 ]
Saadon, Salem [2 ]
机构
[1] USM, CEDEC, George Town, Malaysia
[2] USM, CEDEC, Sch Elect & Elect Engn, George Town, Malaysia
关键词
Piezoelectric materials; Energy conversion; shaped cantilever; MEMS; GENERATOR; FABRICATION; MODE;
D O I
10.1109/UKSim.2013.153
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The simplicity associated with piezoelectric micro-generators makes them very attractive for MEMS applications in which ambient vibrations are harvested and converted into electric energy. These micro-generators can become an alternative to the battery-based solutions in the future, especially for remote systems. In this paper, we propose a model and present the simulation of a MEMS-based energy harvester under ambient vibration excitation using the COVENTORWARE2010 approach. This E-shaped cantilever-based MEMS energy harvester that operates under ambient excitation in frequencies of 28, 29, and 31 Hz within a base acceleration of 1g produces an output power of 0.25 milliwatts at 5k Omega load.
引用
收藏
页码:241 / 246
页数:6
相关论文
共 50 条
  • [21] Power Processing Circuits for Piezoelectric Vibration-Based Energy Harvesters
    D'hulst, Reinhilde
    Sterken, Tom
    Puers, Robert
    Deconinck, Geert
    Driesen, Johan
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2010, 57 (12) : 4170 - 4177
  • [22] Study of vibration suppression and energy harvesting for a Vibration-based Piezoelectric-Electromagnetic energy harvester with nonlinear energy sink
    Wang, Lingzhi
    Liu, Weidong
    Lin, Xiqi
    Yan, Zhitao
    Nie, Xiaochun
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2024, 602
  • [23] MEMS Piezoelectric Energy Harvester Design and Optimization Based on Genetic Algorithm
    Nabavi, Seyedfakhreddin
    Zhang, Lihong
    2016 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2016,
  • [24] MEMS-based low-frequency piezoelectric vibration energy harvester
    Li, Peng-Wei, 1600, Chinese Academy of Sciences (22):
  • [25] Low-frequency Vibration-based Energy Harvester Using a Piezoelectric Composite Beam
    Dhakar, Lokesh
    Liu, Huicong
    Tay, F. E. H.
    Lee, Chengkuo
    2013 8TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS (IEEE NEMS 2013), 2013, : 939 - 942
  • [26] A MEMS PIEZOELECTRIC VIBRATION ENERGY HARVESTER BASED ON TRAPEZOIDAL CANTILEVER BEAM ARRAY
    He, Xianming
    Wen, Quan
    Wen, Zhiyu
    Mu, Xiaojing
    2020 33RD IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS 2020), 2020, : 532 - 535
  • [27] A Broadband Vibration-Based Energy Harvester Using an Array of Piezoelectric Beams Connected by Springs
    Meruane, V.
    Pichara, K.
    SHOCK AND VIBRATION, 2016, 2016
  • [28] Analysis of a Curved Beam MEMS Piezoelectric Vibration Energy Harvester
    Zhou, Yong
    Dong, Yong
    Li, Shi
    MANUFACTURING ENGINEERING AND AUTOMATION I, PTS 1-3, 2011, 139-141 : 1578 - 1581
  • [29] PIEZOELECTRIC VIBRATION ENERGY HARVESTER WITH HIGH POWER DENSITY BY STRUCTURE AND PROCESS OPTIMIZATION
    Wang, Lu
    Wang, Qian
    Liu, Shuai
    Fei, Zhen-xuan
    Zhao, Li-bo
    Ryutaro, Maeda
    2022 16TH SYMPOSIUM ON PIEZOELECTRICITY, ACOUSTIC WAVES, AND DEVICE APPLICATIONS, SPAWDA, 2022, : 174 - 177
  • [30] Optimization of MEMS Vibration Energy Harvester With Perforated Electrode
    Luo, Anxin
    Zhang, Yulong
    Guo, Xinge
    Lu, Yan
    Lee, Chengkuo
    Wang, Fei
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2021, 30 (02) : 299 - 308