Divisibility of power LCM matrices by power GCD matrices on gcd-closed sets

被引:11
|
作者
Zhao, Jianrong [1 ]
机构
[1] Southwestern Univ Finance & Econ, Sch Econ Math, Chengdu, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2014年 / 62卷 / 06期
关键词
divisibility; greatest-type divisor; power GCD matrix; power LCM matrix; gcd-closed set; ASYMPTOTIC-BEHAVIOR; NONSINGULARITY; DETERMINANTS; EIGENVALUES;
D O I
10.1080/03081087.2013.786717
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let and be positive integers and a set of distinct positive integers. The matrix whose -entry is th power of the greatest common divisor (GCD) of and is called the th power GCD matrix on , denoted by . Similarly, we can define th power least common multiple (LCM) matrix . The set is said to be gcd closed if for all . In this paper, we give the necessary and sufficient conditions on the gcd-closed set with such that the power GCD matrix divides the power LCM matrix in the ring of the matrices over the integers. This solves partially an open problem raised by Shaofang Hong in 2002.
引用
收藏
页码:735 / 748
页数:14
相关论文
共 50 条
  • [31] On the additive complexity of GCD and LCM matrices
    S. B. Gashkov
    I. S. Sergeev
    Mathematical Notes, 2016, 100 : 199 - 212
  • [32] On the gcd and lcm of matrices over dedekind domains
    Nanda, VC
    NUMBER THEORY AND DISCRETE MATHEMATICS, 2002, : 201 - 211
  • [33] On unitary analogs of GCD reciprocal LCM matrices
    Haukkanen, Pentti
    Ilmonen, Pauliina
    Nalli, Ayse
    Sillanpaa, Juha
    LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (05): : 599 - 616
  • [34] r重gcd-closed集合上的LCM矩阵
    洪绍方
    四川大学学报(自然科学版), 1996, (06) : 17+10 - 16
  • [35] A topological approach to divisibility of arithmetical functions and GCD matrices
    Haukkanen, Pentti
    LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (03): : 301 - 309
  • [36] ON BOUNDS FOR THE SMALLEST AND THE LARGEST EIGENVALUES OF GCD AND LCM MATRICES
    Altinisik, Ercan
    Buyukkose, Serife
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (01): : 117 - 125
  • [37] An analysis of GCD and LCM matrices via the LDLT-factorization
    Ovall, JS
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2004, 11 : 51 - 58
  • [38] Generalization of GCD matrices
    Haiqing Han
    Qin Li
    Yi Wen
    Shuang Wen
    Jie Li
    Evolutionary Intelligence, 2022, 15 : 2437 - 2443
  • [39] On the norms of GCD matrices
    Bozkurt, Durmuş
    Solak, Süleyman
    Mathematical and Computational Applications, 2002, 7 (03) : 205 - 210
  • [40] THE DETERMINANTS OF GCD MATRICES
    LI, ZS
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 134 : 137 - 143